ﻻ يوجد ملخص باللغة العربية
We present a prototype model that resolves the cosmological constant problem using matter alone, i.e., without modifying gravity. Its generic cosmological solutions adjust an arbitrarily large, negative dark energy to a positive value parametrically suppressed by an initial field velocity. Inflationary initial conditions lead to a positive dark energy exponentially smaller in magnitude than any model parameter, or any scale in the initial conditions.
We study the phenomenology of a recent string construction with a quantum mechanically stable dark energy. A mild supersymmetry protects the vacuum energy but also allows $O(10 - 100)$ TeV scale superpartner masses. The construction is holographic in
We study physics concerning the cosmological constant problem in the framework of effective field theory and suggest that a dominant part of dark energy can originate from gravitational corrections of vacuum energy, under the assumption that the clas
We present how a neutrino condensate and small neutrino masses emerge from a topological formulation of gravitational anomaly. We first recapitulate how a gravitational $theta$-term leads to the emergence of a new bound neutrino state analogous to th
In this paper we revisit the dynamical dark energy model building based on single scalar field involving higher derivative terms. By imposing a degenerate condition on the higher derivatives in curved spacetime, one can select the models which are fr
We discuss the possibility to construct supergravity models with a single superfield describing inflation as well as the tiny cosmological constant $V sim 10^{{-120}}$. One could expect that the simplest way to do it is to study models with a supersy