ﻻ يوجد ملخص باللغة العربية
Interventional effects for mediation analysis were proposed as a solution to the lack of identifiability of natural (in)direct effects in the presence of a mediator-outcome confounder affected by exposure. We present a theoretical and computational study of the properties of the interventional (in)direct effect estimands based on the efficient influence fucntion (EIF) in the non-parametric statistical model. We use the EIF to develop two asymptotically optimal, non-parametric estimators that leverage data-adaptive regression for estimation of the nuisance parameters: a one-step estimator and a targeted minimum loss estimator. A free and open source texttt{R} package implementing our proposed estimators is made available on GitHub. We further present results establishing the conditions under which these estimators are consistent, multiply robust, $n^{1/2}$-consistent and efficient. We illustrate the finite-sample performance of the estimators and corroborate our theoretical results in a simulation study. We also demonstrate the use of the estimators in our motivating application to elucidate the mechanisms behind the unintended harmful effects that a housing intervention had on adolescent girls risk behavior.
An important problem in causal inference is to break down the total effect of treatment into different causal pathways and quantify the causal effect in each pathway. Causal mediation analysis (CMA) is a formal statistical approach for identifying an
Causal mediation analysis is used to evaluate direct and indirect causal effects of a treatment on an outcome of interest through an intermediate variable or a mediator.It is difficult to identify the direct and indirect causal effects because the me
Although the exposure can be randomly assigned in studies of mediation effects, any form of direct intervention on the mediator is often infeasible. As a result, unmeasured mediator-outcome confounding can seldom be ruled out. We propose semiparametr
Greater understanding of the pathways through which an environmental mixture operates is important to design effective interventions. We present new methodology to estimate the natural direct effect (NDE), natural indirect effect (NIE), and controlle
Causal variance decompositions for a given disease-specific quality indicator can be used to quantify differences in performance between hospitals or health care providers. While variance decompositions can demonstrate variation in quality of care, c