ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-parametric efficient causal mediation with intermediate confounders

176   0   0.0 ( 0 )
 نشر من قبل Nima Hejazi
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Interventional effects for mediation analysis were proposed as a solution to the lack of identifiability of natural (in)direct effects in the presence of a mediator-outcome confounder affected by exposure. We present a theoretical and computational study of the properties of the interventional (in)direct effect estimands based on the efficient influence fucntion (EIF) in the non-parametric statistical model. We use the EIF to develop two asymptotically optimal, non-parametric estimators that leverage data-adaptive regression for estimation of the nuisance parameters: a one-step estimator and a targeted minimum loss estimator. A free and open source texttt{R} package implementing our proposed estimators is made available on GitHub. We further present results establishing the conditions under which these estimators are consistent, multiply robust, $n^{1/2}$-consistent and efficient. We illustrate the finite-sample performance of the estimators and corroborate our theoretical results in a simulation study. We also demonstrate the use of the estimators in our motivating application to elucidate the mechanisms behind the unintended harmful effects that a housing intervention had on adolescent girls risk behavior.

قيم البحث

اقرأ أيضاً

An important problem in causal inference is to break down the total effect of treatment into different causal pathways and quantify the causal effect in each pathway. Causal mediation analysis (CMA) is a formal statistical approach for identifying an d estimating these causal effects. Central to CMA is the sequential ignorability assumption that implies all pre-treatment confounders are measured and they can capture different types of confounding, e.g., post-treatment confounders and hidden confounders. Typically unverifiable in observational studies, this assumption restrains both the coverage and practicality of conventional methods. This work, therefore, aims to circumvent the stringent assumption by following a causal graph with a unified confounder and its proxy variables. Our core contribution is an algorithm that combines deep latent-variable models and proxy strategy to jointly infer a unified surrogate confounder and estimate different causal effects in CMA from observed variables. Empirical evaluations using both synthetic and semi-synthetic datasets validate the effectiveness of the proposed method.
72 - Wei Li , Chunchen Liu , Zhi Geng 2020
Causal mediation analysis is used to evaluate direct and indirect causal effects of a treatment on an outcome of interest through an intermediate variable or a mediator.It is difficult to identify the direct and indirect causal effects because the me diator cannot be randomly assigned in many real applications. In this article, we consider a causal model including latent confounders between the mediator and the outcome. We present sufficient conditions for identifying the direct and indirect effects and propose an approach for estimating them. The performance of the proposed approach is evaluated by simulation studies. Finally, we apply the approach to a data set of the customer loyalty survey by a telecom company.
76 - BaoLuo Sun , Ting Ye 2020
Although the exposure can be randomly assigned in studies of mediation effects, any form of direct intervention on the mediator is often infeasible. As a result, unmeasured mediator-outcome confounding can seldom be ruled out. We propose semiparametr ic identification of natural direct and indirect effects in the presence of unmeasured mediator-outcome confounding by leveraging heteroskedasticity restrictions on the observed data law. For inference, we develop semiparametric estimators that remain consistent under partial misspecifications of the observed data model. We illustrate the proposed estimators through both simulations and an application to evaluate the effect of self-efficacy on fatigue among health care workers during the COVID-19 outbreak.
Greater understanding of the pathways through which an environmental mixture operates is important to design effective interventions. We present new methodology to estimate the natural direct effect (NDE), natural indirect effect (NIE), and controlle d direct effects (CDEs) of a complex mixture exposure on an outcome through a mediator variable. We implement Bayesian Kernel Machine Regression (BKMR) to allow for all possible interactions and nonlinear effects of 1) the co-exposures on the mediator, 2) the co-exposures and mediator on the outcome, and 3) selected covariates on the mediator and/or outcome. From the posterior predictive distributions of the mediator and outcome, we simulate counterfactuals to obtain posterior samples, estimates, and credible intervals of the mediation effects. Our simulation study demonstrates that when the exposure-mediator and exposure-mediator-outcome relationships are complex, BKMR-Causal Mediation Analysis performs better than current mediation methods. We applied our methodology to quantify the contribution of birth length as a mediator between in utero co-exposure to arsenic, manganese and lead, and childrens neurodevelopmental scores, in a prospective birth cohort in Bangladesh. Among younger children, we found a negative association between the metal mixture and neurodevelopment. We also found evidence that birth length mediates the effect of exposure to the metal mixture on neurodevelopment for younger children. If birth length were fixed to its $75^{th}$ percentile value, the effect of the metal mixture on neurodevelopment decreases, suggesting that nutritional interventions to help increase birth length could potentially block the harmful effects of the metal mixture on neurodevelopment.
Causal variance decompositions for a given disease-specific quality indicator can be used to quantify differences in performance between hospitals or health care providers. While variance decompositions can demonstrate variation in quality of care, c ausal mediation analysis can be used to study care pathways leading to the differences in performance between the institutions. This raises the question of whether the two approaches can be combined to decompose between-hospital variation in an outcome type indicator to that mediated through a given process (indirect effect) and remaining variation due to all other pathways (direct effect). For this purpose, we derive a causal mediation analysis decomposition of between-hospital variance, discuss its interpretation, and propose an estimation approach based on generalized linear mixed models for the outcome and the mediator. We study the performance of the estimators in a simulation study and demonstrate its use in administrative data on kidney cancer care in Ontario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا