ﻻ يوجد ملخص باللغة العربية
Variational Bayes (VB) is a popular scalable alternative to Markov chain Monte Carlo for Bayesian inference. We study a mean-field spike and slab VB approximation of widely used Bayesian model selection priors in sparse high-dimensional logistic regression. We provide non-asymptotic theoretical guarantees for the VB posterior in both $ell_2$ and prediction loss for a sparse truth, giving optimal (minimax) convergence rates. Since the VB algorithm does not depend on the unknown truth to achieve optimality, our results shed light on effective prior choices. We confirm the improved performance of our VB algorithm over common sparse VB approaches in a numerical study.
Logistic regression remains one of the most widely used tools in applied statistics, machine learning and data science. However, in moderately high-dimensional problems, where the number of features $d$ is a non-negligible fraction of the sample size
We propose a variational Bayesian (VB) procedure for high-dimensional linear model inferences with heavy tail shrinkage priors, such as student-t prior. Theoretically, we establish the consistency of the proposed VB method and prove that under the pr
This paper studies binary logistic regression for rare events data, or imbalanced data, where the number of events (observations in one class, often called cases) is significantly smaller than the number of nonevents (observations in the other class,
Spike-and-slab priors are popular Bayesian solutions for high-dimensional linear regression problems. Previous theoretical studies on spike-and-slab methods focus on specific prior formulations and use prior-dependent conditions and analyses, and thu
We study a mean-field spike and slab variational Bayes (VB) approximation to Bayesian model selection priors in sparse high-dimensional linear regression. Under compatibility conditions on the design matrix, oracle inequalities are derived for the me