ﻻ يوجد ملخص باللغة العربية
We introduce a new class of extremum seeking controllers able to achieve fixed time convergence to the solution of optimization problems defined by static and dynamical systems. Unlike existing approaches in the literature, the convergence time of the proposed algorithms does not depend on the initial conditions and it can be prescribed a priori by tuning the parameters of the controller. Specifically, our first contribution is a novel gradient-based extremum seeking algorithm for cost functions that satisfy the Polyak-Lojasiewicz (PL) inequality with some coefficient kappa > 0, and for which the extremum seeking controller guarantees a fixed upper bound on the convergence time that is independent of the initial conditions but dependent on the coefficient kappa. Second, in order to remove the dependence on kappa, we introduce a novel Newton-based extremum seeking algorithm that guarantees a fully assignable fixed upper bound on the convergence time, thus paralleling existing asymptotic results in Newton-based extremum seeking where the rate of convergence is fully assignable. Finally, we study the problem of optimizing dynamical systems, where the cost function corresponds to the steady-state input-to-output map of a stable but unknown dynamical system. In this case, after a time scale transformation is performed, the proposed extremum seeking controllers achieve the same fixed upper bound on the convergence time as in the static case. Our results exploit recent gradient flow structures proposed by Garg and Panagou in [3], and are established by using averaging theory and singular perturbation theory for dynamical systems that are not necessarily Lipschitz continuous. We confirm the validity of our results via numerical simulations that illustrate the key advantages of the extremum seeking controllers presented in this paper.
In this paper, we present a novel Newton-based extremum seeking controller for the solution of multivariable model-free optimization problems in static maps. Unlike existing asymptotic and fixed-time results in the literature, we present a scheme tha
We introduce a novel class of Nash equilibrium seeking dynamics for non-cooperative games with a finite number of players, where the convergence to the Nash equilibrium is bounded by a KL function with a settling time that can be upper bounded by a p
This paper studies the extremum seeking control (ESC) problem for a class of constrained nonlinear systems. Specifically, we focus on a family of constraints allowing to reformulate the original nonlinear system in the so-called input-output normal f
In this paper we consider the problem of finding a Nash equilibrium (NE) via zeroth-order feedback information in games with merely monotone pseudogradient mapping. Based on hybrid system theory, we propose a novel extremum seeking algorithm which co
Differentiation is an important task in control, observation and fault detection. Levants differentiator is unique, since it is able to estimate exactly and robustly the derivatives of a signal with a bounded high-order derivative. However, the conve