ﻻ يوجد ملخص باللغة العربية
This paper studies the extremum seeking control (ESC) problem for a class of constrained nonlinear systems. Specifically, we focus on a family of constraints allowing to reformulate the original nonlinear system in the so-called input-output normal form. To steer the system to optimize a performance function without knowing its explicit form, we propose a novel numerical optimization-based extremum seeking control (NOESC) design consisting of a constrained numerical optimization method and an inversion based feedforward controller. In particular, a projected gradient descent algorithm is exploited to produce the state sequence to optimize the performance function, whereas a suitable boundary value problem accommodates the finite-time state transition between each two consecutive points of the state sequence. Compared to available NOESC methods, the proposed approach i) can explicitly deal with output constraints; ii) the performance function can consider a direct dependence on the states of the internal dynamics; iii) the internal dynamics do not have to be necessarily stable. The effectiveness of the proposed ESC scheme is shown through extensive numerical simulations.
Robust control is a core approach for controlling systems with performance guarantees that are robust to modeling error, and is widely used in real-world systems. However, current robust control approaches can only handle small system uncertainty, an
We consider the covariance steering problem for nonlinear control-affine systems. Our objective is to find an optimal control strategy to steer the state of a system from an initial distribution to a target one whose mean and covariance are given. Du
We introduce a new class of extremum seeking controllers able to achieve fixed time convergence to the solution of optimization problems defined by static and dynamical systems. Unlike existing approaches in the literature, the convergence time of th
In this paper, we investigate a constrained optimal coordination problem for a class of heterogeneous nonlinear multi-agent systems described by high-order dynamics subject to both unknown nonlinearities and external disturbances. Each agent has a pr
In this paper, we present a novel Newton-based extremum seeking controller for the solution of multivariable model-free optimization problems in static maps. Unlike existing asymptotic and fixed-time results in the literature, we present a scheme tha