ترغب بنشر مسار تعليمي؟ اضغط هنا

$theta=pi$ in $SU(N)/mathbb{Z}_N$ gauge theories

71   0   0.0 ( 0 )
 نشر من قبل Ryuichiro Kitano
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In $SU(N)$ gauge theory, it is argued recently that there exists a mixed anomaly between the CP symmetry and the 1-form $mathbb{Z}_N$ symmetry at $theta=pi$, and the anomaly matching requires CP to be spontaneously broken at $theta=pi$ if the system is in the confining phase. In this paper, we elaborate on this discussion by examining the large volume behavior of the partition functions of the $SU(N)/mathbb{Z}_N$ theory on $T^4$ a la t Hooft. The periodicity of the partition function in $theta$, which is not $2pi$ due to fractional instanton numbers, suggests the presence of a phase transition at $theta=pi$. We propose lattice simulations to study the distribution of the instanton number in $SU(N)/mathbb{Z}_N$ theories. A characteristic shape of the distribution is predicted when the system is in the confining phase. The measurements of the distribution may be useful in understanding the phase structure of the theory.



قيم البحث

اقرأ أيضاً

We review results concerning the theta dependence of 4D SU(N) gauge theories and QCD, where theta is the coefficient of the CP-violating topological term in the Lagrangian. In particular, we discuss theta dependence in the large-N limit. Most resul ts have been obtained within the lattice formulation of the theory via numerical simulations, which allow to investigate the theta dependence of the ground-state energy and the spectrum around theta=0 by determining the moments of the topological charge distribution, and their correlations with other observables. We discuss the various methods which have been employed to determine the topological susceptibility, and higher-order terms of the theta expansion. We review results at zero and finite temperature. We show that the results support the scenario obtained by general large-N scaling arguments, and in particular the Witten-Veneziano mechanism to explain the U(1)_A problem. We also compare with results obtained by other approaches, especially in the large-N limit, where the issue has been also addressed using, for example, the AdS/CFT correspondence. We discuss issues related to theta dependence in full QCD: the neutron electric dipole moment, the dependence of the topological susceptibility on the quark masses, the U(1)_A symmetry breaking at finite temperature. We also consider the 2D CP(N) model, which is an interesting theoretical laboratory to study issues related to topology. We review analytical results in the large-N limit, and numerical results within its lattice formulation. Finally, we discuss the main features of the two-point correlation function of the topological charge density.
We review recent results on the theta dependence of the ground-state energy and spectrum of four-dimensional SU(N) gauge theories, where theta is the coefficient of the CP-violating topological term F-Fdual in the Lagrangian. In particular, we discus s the results obtained by Monte Carlo simulations of the lattice formulation of QCD, which allow the investigation of theta dependence around theta=0 by determining the moments of the topological charge distribution, and their correlations with other observables. The results for N=3 and larger values of N support the scenario obtained by general large-N scaling arguments.
We discuss the existence of a conformal phase in SU(N) gauge theories in four dimensions. In this lattice study we explore the model in the bare parameter space, varying the lattice coupling and bare mass. Simulations are carried out with three color s and twelve flavors of dynamical staggered fermions in the fundamental representation. The analysis of the chiral order parameter and the mass spectrum of the theory indicates the restoration of chiral symmetry at zero temperature and the presence of a Coulomb-like phase, depicting a scenario compatible with the existence of an infrared stable fixed point at nonzero coupling. Our analysis supports the conclusion that the onset of the conformal window for QCD-like theories is smaller than Nf=12, before the loss of asymptotic freedom at sixteen and a half flavors. We discuss open questions and future directions.
Generalizations of the AGT correspondence between 4D $mathcal{N}=2$ $SU(2)$ supersymmetric gauge theory on ${mathbb {C}}^2$ with $Omega$-deformation and 2D Liouville conformal field theory include a correspondence between 4D $mathcal{N}=2$ $SU(N)$ su persymmetric gauge theories, $N = 2, 3, ldots$, on ${mathbb {C}}^2/{mathbb {Z}}_n$, $n = 2, 3, ldots$, with $Omega$-deformation and 2D conformal field theories with $mathcal{W}^{, para}_{N, n}$ ($n$-th parafermion $mathcal{W}_N$) symmetry and $widehat{mathfrak{sl}}(n)_N$ symmetry. In this work, we trivialize the factor with $mathcal{W}^{, para}_{N, n}$ symmetry in the 4D $SU(N)$ instanton partition functions on ${mathbb {C}}^2/{mathbb {Z}}_n$ (by using specific choices of parameters and imposing specific conditions on the $N$-tuples of Young diagrams that label the states), and extract the 2D $widehat{mathfrak{sl}}(n)_N$ WZW conformal blocks, $n = 2, 3, ldots$, $N = 1, 2, ldots, .$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا