ﻻ يوجد ملخص باللغة العربية
We generalize Bonahon and Wongs $mathrm{SL}_2(mathbb{C})$-quantum trace map to the setting of $mathrm{SL}_3(mathbb{C})$. More precisely, for each non-zero complex number $q$, we associate to every isotopy class of framed oriented links $K$ in a thickened punctured surface $mathfrak{S} times (0, 1)$ a Laurent polynomial $mathrm{Tr}_lambda^q(K) = mathrm{Tr}_lambda^q(K)(X_i^q)$ in $q$-deformations $X_i^q$ of the Fock-Goncharov coordinates $X_i$ for a higher Teichm{u}ller space, depending on the choice of an ideal triangulation $lambda$ of the surface $mathfrak{S}$. Along the way, we propose a definition for a $mathrm{SL}_n(mathbb{C})$-version of this invariant.
We show that the quantized Fock-Goncharov monodromy matrices satisfy the relations of the quantum special linear group $mathrm{SL}_n^q$. The proof employs a quantum version of the technology invented by Fock-Goncharov called snakes. This relationship
We provide an explicit set of algebraically independent generators for the algebra of invariant differential operators on the Riemannian symmetric space associated with $SL_n(R)$.
Generalizations of the AGT correspondence between 4D $mathcal{N}=2$ $SU(2)$ supersymmetric gauge theory on ${mathbb {C}}^2$ with $Omega$-deformation and 2D Liouville conformal field theory include a correspondence between 4D $mathcal{N}=2$ $SU(N)$ su
For a finite-type surface $mathfrak{S}$, we study a preferred basis for the commutative algebra $mathbb{C}[mathcal{X}_{mathrm{SL}_3(mathbb{C})}(mathfrak{S})]$ of regular functions on the $mathrm{SL}_3(mathbb{C})$-character variety, introduced by Siko
Let (N, G), where N is a normal subgroup of G<SL_n(C), be a pair of finite groups and V a finite-dimensional fundamental G-module. We study the G-invariants in the symmetric algebra S(V) by giving explicit formulas of the Poincar{e} series for the in