ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-$n$ global ideal MHD instabilities in CFETR baseline scenario

101   0   0.0 ( 0 )
 نشر من قبل Ping Zhu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This article reports an evaluation on the linear ideal magnetohydrodynamic (MHD) stability of the China Fusion Engineering Test Reactor (CFETR) baseline scenario for various first-wall locations. The initial-value code NIMROD and eigen-value code AEGIS are employed in this analysis. A good agreement is achieved between two codes in the growth rates of $n=1-10$ ideal MHD modes for various locations of the perfect conducting first-wall. The higher-$n$ modes are dominated by ballooning modes and localized in the pedestal region, while the lower-$n$ modes have more prominent external kink components and broader mode profiles. The influences of plasma-vacuum profile and wall shape are also examined using NIMROD. In presence of resistive wall, the low-$n$ ideal MHD instabilities are further studied using AEGIS. For the designed first-wall location, the $n = 1$ resistive wall mode (RWM) is found unstable, which could be fully stabilized by uniform toroidal rotation above 2.9% core Alfven speed.



قيم البحث

اقرأ أيضاً

The CFETR baseline scenario is based on a H-mode equilibrium with high pedestal and highly peaked edge bootstrap current, along with strong reverse shear in safety factor profile. The stability of ideal MHD modes for the CFETR baseline scenario has b een evaluated using NIMROD and AEGIS codes. The toroidal mode numbers (n=1-10) are considered in this analysis for different positions of perfectly conducting wall in order to estimate the ideal wall effect on the stability of ideal MHD modes for physics and engineering designs of CFETR. Although, the modes (n=1-10) are found to be unstable in ideal MHD, the structure of all modes is edge localized. Growth rates of all modes are found to be increasing initially with wall position before they reach ideal wall saturation limit (no wall limit). No global core modes are found to be dominantly unstable in our analysis. The design of $q_{min}>2$ and strong reverse shear in $q$ profile is expected to prevent the excitation of global modes. Therefore, this baseline scenario is considered to be suitable for supporting long time steady state discharge in context of ideal MHD physics, if ELMs could be controlled.
85 - Ping Zhu , Li Li , Yu Fang 2021
The China Fusion Engineering Test Reactor (CFETR) and the Huazhong Field Reversed Configuration (HFRC), currently both under intensive physical and engineering designs in China, are the two major projects representative of the low-density steady-stat e and high-density pulsed pathways to fusion. One of the primary tasks of the physics designs for both CFETR and HFRC is the assessment and analysis of the magnetohydrodynamic (MHD) stability of the proposed design schemes. Comprehensive efforts on the assessment of MHD stability of CFETR and HFRC baseline scenarios have led to preliminary progresses that may further benefit engineering designs.
139 - Rui Han , Ping Zhu , Linjin Zheng 2021
The stability of the $n=1$ resistive wall modes (RWMs) is investigated using the AEGIS code for the newly designed China Fusion Engineering Test Reactor (CFETR) 1GW steady-state operating (SSO) scenario. Here, $n$ is the toroidal mode number. Due to the large fraction of bootstrap current contribution, the profile of safety factor q is deeply reversed in magnetic shear in the central core region and locally flattened within the edge pedestal. Consequently the pressure-driven infernal components develop in the corresponding q-flattened regions of both core and edge. However, the edge infernal components dominate the $n=1$ RWM structure and lead to lower $beta_N$ limits than the designed target $beta_N$ for the CFETR 1GW SSO scenario. The edge rotation is found the most critical to the stabilization due to the dominant influence of the edge infernal components, which should be maintained above $1.5%Omega_{A0}$ in magnitude in order for the rotation alone to fully suppress the $n=1$ RWM in the CFETR 1GW SSO scenario.
In ideal MHD, the magnetic flux is advected by the plasma motion, freezing flux-surfaces into the flow. An MHD equilibrium is reached when the flow relaxes and force balance is achieved. We ask what classes of MHD equilibria can be accessed from a gi ven initial state via smooth incompressible ideal motion. It is found that certain boundary displacements are formally not supported. This follows from yet another investigation of the Hahm--Kulsrud--Taylor (HKT) problem, which highlights the resonant behaviour near a rational layer formed by a set of degenerate critical points in the flux-function. When trying to retain the mirror symmetry of the flux-function with respect to the resonant layer, the vector field that generates the volume-preserving diffeomorphism vanishes at the identity to all order in the time-like path parameter.
Global electromagnetic gyrokinetic simulations show the existence of near threshold conditions for both a high-$n$ kinetic ballooning mode (KBM) and an intermediate-$n$ kinetic version of peeling-ballooning mode (KPBM) in the edge pedestal of two DII I-D H-mode discharges. When the magnetic shear is reduced in a narrow region of steep pressure gradient, the KPBM is significantly stabilized, while the KBM is weakly destabilized and hence becomes the most-unstable mode. Collisions decrease the KBMs critical $beta$ and increase the growth rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا