ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-Preserving Chiral Photonic Crystal Mirror

92   0   0.0 ( 0 )
 نشر من قبل Behrooz Semnani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chirality refers to a geometric phenomenon in which objects are not superimposable on their mirror image. Structures made of nano-scale chiral elements can display chiroptical effects, such as dichroism for left- and right- handed circularly polarized light, which makes them of high interest for applications ranging from quantum information processing and quantum optics to circular dichroism spectroscopy and molecular recognition. At the same time, strong effects have been challenging to achieve even in synthetic optical media and chiroptical effects for light with normal incidence has been speculated to be prohibited in lossless, thin, quasi-two-dimensional structures. Here, we report on our experimental realization of a giant chiroptical effect in a thin monolithic photonic crystal mirror. Unlike conventional mirrors, our structure selectively reflects only one spin state of light, while preserving its handedness, with a near unity level of circular dichroism. The operational principle of the photonic-crystal mirror relies on Guided Mode Resonance (GMR) with simultaneous excitation of leaky TE and TM Bloch modes in the photonic crystal slab. Such modes are not reliant on the suppression of their radiative losses through the long-range destructive interference and even small areas of the photonic-crystal exhibit robust circular dichroism. Despite its simplicity, the mirror strongly surpasses the performance of earlier reported structures and, contrary to a prevailed notion, demonstrates that near unity reflectivity contrast for the opposite helicities is achievable in a quasi-two-dimensional structure.



قيم البحث

اقرأ أيضاً

108 - Shan Xiao , Shiyao Wu , Xin Xie 2021
Chiral quantum optics has attracted considerable interest in the field of quantum information science. Exploiting the spin-polarization properties of quantum emitters and engineering rational photonic nanostructures has made it possible to transform information from spin to path encoding. Here, compact chiral photonic circuits with deterministic circularly polarized chiral routing and beamsplitting are demonstrated using two laterally adjacent waveguides coupled with quantum dots. Chiral routing arises from the electromagnetic field chirality in waveguide, and beamsplitting is obtained via the evanescent field coupling. The spin- and position-dependent directional spontaneous emission are achieved by spatially selective micro-photoluminescence measurements, with a chiral contrast of up to 0.84 in the chiral photonic circuits. This makes a significant advancement for broadening the application scenarios of chiral quantum optics and developing scalable quantum photonic networks.
121 - Peng Shi , Luping Du , Mingjie Li 2021
Chiral spin textures are researched widely in condensed matter systems and show potential for spintronics and storage applications. Along with extensive condensed-matter studies of chiral spin textures, photonic counterparts of these textures have be en observed in various optical systems with broken inversion symmetry. Unfortunately, the resemblances are only phenomenological. This work proposes a theoretical framework based on the variational theorem to show that the formation of photonic chiral spin textures in an optical interface is derived from the systems symmetry and relativity. Analysis of the optical systems rotational symmetry indicates that conservation of the total angular momentum is preserved from the local variations of spin vectors. Specifically, although the integral spin momentum does not carry net energy, the local spin momentum distribution, which determines the local subluminal energy transport and minimization variation of the square of total angular momentum, results in the chiral twisting of the spin vectors. The findings here deepen the understanding of the symmetries, conservative laws and energy transportation in optical system, construct the comparability in the formation mechanisms and geometries of photonic and condensed-matter chiral spin textures, and suggest applications to optical manipulation and chiral photonics.
103 - C. F. Fong , Y. Ota , Y. Arakawa 2021
The H1 photonic crystal cavity supports two degenerate dipole modes of orthogonal linear polarization which could give rise to circularly polarized fields when driven with a $pi$/$2$ phase difference. However, fabrication errors tend to break the sym metry of the cavity which lifts the degeneracy of the modes, rendering the cavity unsuitable for supporting circular polarization. We demonstrate numerically, a scheme that induces chirality in the cavity modes, thereby achieving a cavity that supports intrinsic circular polarization. By selectively modifying two air holes around the cavity, the dipole modes could interact via asymmetric coherent backscattering which is a non-Hermitian process. With suitable air hole parameters, the cavity modes approach the exceptional point, coalescing in frequencies and linewidths as well as giving rise to significant circular polarization close to unity. The handedness of the chirality can be selected depending on the choice of the modified air holes. Our results highlight the prospect of using the H1 photonic crystal cavity for chiral-light matter coupling in applications such as valleytronics, spin-photon interfaces and the generation of single photons with well-defined spins.
Reflection at relativistically moving plasma mirrors is a well-known approach for frequency conversion as an alternative to nonlinear techniques. A key issue with plasma mirrors is the need for a high carrier concentration, of order 10^21 cm^-3, to a chieve an appreciable reflectivity. To generate such high carrier concentrations, short laser pulses with extreme power densities of the order >10^15 W/cm^2 are required. Here, we introduce a novel waveguide-based method for generating relativistically moving plasma mirrors that requires much lower pump powers and much less carrier concentration. Specifically, we achieve an experimental demonstration of 35% reflection for a carrier concentration of 5*10^17/cm^3 generated by a power density of only 1.2*10^9 W/cm^2. Both the plasma mirror and the signal are confined and propagating within a solid state silicon slow light photonic crystal waveguide. This extraordinary effect only becomes possible because we exploit an indirect intraband optical transition in a dispersion engineered slow light waveguide, where the incident light cannot couple to other states beyond the moving front and has to reflect from it. The moving free carrier (FC) plasma mirror is generated by two photon absorption of 6 ps long pump pulse with a peak power of 6.2 W. The reflection was demonstrated by the interaction of a continuous wave (CW) probe wave co-propagating with the relativistic FC plasma mirror inside a 400 micro-meter long slow light waveguide. Upon interaction with the FC plasma mirror, the probe wave packets, which initially propagate slower than the plasma mirror, are bounced and accelerated, finally escaping from the front in forward direction. The forward reflection of the probe wave packets are accompanied by a frequency upshift. The reflection efficiency is estimated for the part of the CW probe interacting with the pump pulse.
This article offers an extensive survey of results obtained using hybrid photonic crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in s olid- and hollow-core PCFs through various post-processing methods has enabled new directions towards understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids and gases can significantly extend the functionality of PCFs. In the first part of this review we discuss the most important efforts by research groups around the globe to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors and metals. The second part is concentrated on the most recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics towards light generation in the extreme wavelength regions of vacuum ultraviolet (VUV), pulse propagation and compression dynamics in both atomic and molecular gases, and novel soliton - plasma interactions are reviewed. A discussion of future prospects and directions is also included.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا