ﻻ يوجد ملخص باللغة العربية
Chiral spin textures are researched widely in condensed matter systems and show potential for spintronics and storage applications. Along with extensive condensed-matter studies of chiral spin textures, photonic counterparts of these textures have been observed in various optical systems with broken inversion symmetry. Unfortunately, the resemblances are only phenomenological. This work proposes a theoretical framework based on the variational theorem to show that the formation of photonic chiral spin textures in an optical interface is derived from the systems symmetry and relativity. Analysis of the optical systems rotational symmetry indicates that conservation of the total angular momentum is preserved from the local variations of spin vectors. Specifically, although the integral spin momentum does not carry net energy, the local spin momentum distribution, which determines the local subluminal energy transport and minimization variation of the square of total angular momentum, results in the chiral twisting of the spin vectors. The findings here deepen the understanding of the symmetries, conservative laws and energy transportation in optical system, construct the comparability in the formation mechanisms and geometries of photonic and condensed-matter chiral spin textures, and suggest applications to optical manipulation and chiral photonics.
Dirac semimetal (DSM) is a phase of matter, whose elementary excitation is described by the relativistic Dirac equation. Its parity-time symmetry enforces the linear-dispersed Dirac cone in the momentum space to be non-chiral, leading to surface stat
We generate experimentally a honeycomb refractive index pattern in an atomic vapor cell using electromagnetically-induced transparency. We study experimentally and theoretically the propagation of polarized light beams in such photonic graphene. We d
High-order topological phases, such as those with nontrivial quadrupole moments, protect edge states that are themselves topological insulators in lower dimensions. So far, most quadrupole phases of light are explored in linear optical systems, which
Chirality refers to a geometric phenomenon in which objects are not superimposable on their mirror image. Structures made of nano-scale chiral elements can display chiroptical effects, such as dichroism for left- and right- handed circularly polarize
Chiral quantum optics has attracted considerable interest in the field of quantum information science. Exploiting the spin-polarization properties of quantum emitters and engineering rational photonic nanostructures has made it possible to transform