ﻻ يوجد ملخص باللغة العربية
The H1 photonic crystal cavity supports two degenerate dipole modes of orthogonal linear polarization which could give rise to circularly polarized fields when driven with a $pi$/$2$ phase difference. However, fabrication errors tend to break the symmetry of the cavity which lifts the degeneracy of the modes, rendering the cavity unsuitable for supporting circular polarization. We demonstrate numerically, a scheme that induces chirality in the cavity modes, thereby achieving a cavity that supports intrinsic circular polarization. By selectively modifying two air holes around the cavity, the dipole modes could interact via asymmetric coherent backscattering which is a non-Hermitian process. With suitable air hole parameters, the cavity modes approach the exceptional point, coalescing in frequencies and linewidths as well as giving rise to significant circular polarization close to unity. The handedness of the chirality can be selected depending on the choice of the modified air holes. Our results highlight the prospect of using the H1 photonic crystal cavity for chiral-light matter coupling in applications such as valleytronics, spin-photon interfaces and the generation of single photons with well-defined spins.
Over the past decade, parity-time ($mathcal{PT}$)-symmetric Hamiltonians have been experimentally realized in classical, optical settings with balanced gain and loss, or in quantum systems with localized loss. In both realizations, the $mathcal{PT}$-
We describe the design, fabrication, and spectroscopy of coupled, high Quality (Q) factor silicon nanobeam photonic crystal cavities. We show that the single nanobeam cavity modes are coupled into even and odd superposition modes, and we simulate the
Hybrid quantum information protocols are based on local qubits, such as trapped atoms, NV centers, and quantum dots, coupled to photons. The coupling is achieved through optical cavities. Here we demonstrate far-field optimized H1 photonic crystal me
We demonstrate the existence of exceptional points of degeneracy (EPD) of periodic eigenstates in non-Hermitian coupled chains of dipolar scatterers. Guided modes supported by these structures can exhibit an EPD in their dispersion diagram at which t
Exceptional points (EPs), at which both eigenvalues and eigenvectors coalesce, are ubiquitous and unique features of non-Hermitian systems. Second-order EPs are by far the most studied due to their abundance, requiring only the tuning of two real par