ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying nodal properties that are crucial for the dynamical robustness of multi-stable networks

137   0   0.0 ( 0 )
 نشر من قبل Pranay Rungta
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the collective dynamics of bi-stable elements connected in different network topologies, ranging from rings and small-world networks, to scale-free networks and stars. We estimate the dynamical robustness of such networks by introducing a variant of the concept of multi-node basin stability, which allows us to gauge the global stability of the dynamics of the network in response to local perturbations affecting a certain class of nodes of a system. We show that perturbing nodes with high closeness and betweeness-centrality significantly reduces the capacity of the system to return to the desired state. This effect is very pronounced for a star network which has one hub node with significantly different closeness/betweeness-centrality than all the peripheral nodes. In such a network, perturbation of the single hub node has the capacity to destroy the collective state. On the other hand, even when a majority of the peripheral nodes are strongly perturbed, the hub manages to restore the system to its original state, demonstrating the drastic effect of the centrality of the perturbed node on the dynamics of the network. Further, we explore explore Random Scale-Free Networks of bi-stable dynamical elements. We exploit the difference in the distribution of betweeness centralities, closeness centralities and degrees of the nodes in Random Scale-Free Networks with m=1 and m=2, to probe which centrality property most influences the robustness of the collective dynamics in these heterogeneous networks. Significantly, we find clear evidence that the betweeness centrality of the perturbed node is more crucial for dynamical robustness, than closeness centrality or degree of the node. This result is important in deciding which nodes to safeguard in order to maintain the collective state of this network against targeted localized attacks.



قيم البحث

اقرأ أيضاً

We investigate the collective dynamics of chaotic multi-stable Duffing oscillators connected in different network topologies, ranging from star and ring networks, to scale-free networks. We estimate the resilience of such networks by introducing a va riant of the concept of multi-node Basin Stability, which allows us to gauge the global stability of the collective dynamics of the network in response to large perturbations localized on certain nodes. We observe that in a star network, perturbing just the hub node has the capacity to destroy the collective state of the entire system. On the other hand, even when a majority of the peripheral nodes are strongly perturbed, the hub manages to restore the system to its original state. This demonstrates the drastic effect of the centrality of the perturbed node on the collective dynamics of the full network. Further, we explore scale-free networks of such multi-stable oscillators and demonstrate that targetted attacks on nodes with high centrality can destroy the collective dynamics much more efficiently than random attacks, irrespective of the nature of the nodal dynamics and type of perturbation. We also find clear evidence that the betweeness centrality of the perturbed node is most crucial for dynamical robustness, with the entire system being more vulnerable to attacks on nodes with high betweeness. These results are crucial for deciding which nodes to stringently safeguard in order to ensure the recovery of the network after targetted localized attacks.
In this work, we study the dynamical robustness in a system consisting of both active and inactive oscillators. We analytically show that the dynamical robustness of such system is determined by the cross link density between active and inactive subp opulations, which depends on the specific process of inactivation. It is the multi-valued dependence of the cross link density on the control parameter, i.e., the ratio of inactive oscillators in the system, that leads to the fluctuation of the critical points. We further investigate how different network topologies and inactivation strategies affect the fluctuation. Our results explain why the fluctuation is more obvious in heterogeneous networks than in homogeneous ones, and why the low-degree nodes are crucial in terms of dynamical robustness. The analytical results are supported by numerical verifications.
Scholars, advertisers and political activists see massive online social networks as a representation of social interactions that can be used to study the propagation of ideas, social bond dynamics and viral marketing, among others. But the linked str uctures of social networks do not reveal actual interactions among people. Scarcity of attention and the daily rythms of life and work makes people default to interacting with those few that matter and that reciprocate their attention. A study of social interactions within Twitter reveals that the driver of usage is a sparse and hidden network of connections underlying the declared set of friends and followers.
We study the problem of finding solutions to the stable matching problem that are robust to errors in the input and we obtain a polynomial time algorithm for a special class of errors. In the process, we also initiate work on a new structural questio n concerning the stable matching problem, namely finding relationships between the lattices of solutions of two nearby instances. Our main algorithmic result is the following: We identify a polynomially large class of errors, $D$, that can be introduced in a stable matching instance. Given an instance $A$ of stable matching, let $B$ be the random variable that represents the instance that results after introducing {em one} error from $D$, chosen via a given discrete probability distribution. The problem is to find a stable matching for $A$ that maximizes the probability of being stable for $B$ as well. Via new structural properties of the type described in the question stated above, we give a combinatorial polynomial time algorithm for this problem. We also show that the set of robust stable matchings for instance $A$, under probability distribution $p$, forms a sublattice of the lattice of stable matchings for $A$. We give an efficient algorithm for finding a succinct representation for this set; this representation has the property that any member of the set can be efficiently retrieved from it.
We study the Kuramoto-Sakaguchi (KS) model composed by any N identical phase oscillators symmetrically coupled. Ranging from local (one-to-one, R = 1) to global (all-to-all, R = N/2) couplings, we derive the general solution that describes the networ k dynamics next to an equilibrium. Therewith we build stability diagrams according to N and R bringing to the light a rich scenery of attractors, repellers, saddles, and non-hyperbolic equilibriums. Our result also uncovers the obscure repulsive regime of the KS model through bifurcation analysis. Moreover, we present numerical evolutions of the network showing the great accordance with our analytical one. The exact knowledge of the behavior close to equilibriums is a fundamental step to investigate phenomena about synchronization in networks. As an example, at the end we discuss the dynamics behind chimera states from the point of view of our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا