ﻻ يوجد ملخص باللغة العربية
We investigate the collective dynamics of bi-stable elements connected in different network topologies, ranging from rings and small-world networks, to scale-free networks and stars. We estimate the dynamical robustness of such networks by introducing a variant of the concept of multi-node basin stability, which allows us to gauge the global stability of the dynamics of the network in response to local perturbations affecting a certain class of nodes of a system. We show that perturbing nodes with high closeness and betweeness-centrality significantly reduces the capacity of the system to return to the desired state. This effect is very pronounced for a star network which has one hub node with significantly different closeness/betweeness-centrality than all the peripheral nodes. In such a network, perturbation of the single hub node has the capacity to destroy the collective state. On the other hand, even when a majority of the peripheral nodes are strongly perturbed, the hub manages to restore the system to its original state, demonstrating the drastic effect of the centrality of the perturbed node on the dynamics of the network. Further, we explore explore Random Scale-Free Networks of bi-stable dynamical elements. We exploit the difference in the distribution of betweeness centralities, closeness centralities and degrees of the nodes in Random Scale-Free Networks with m=1 and m=2, to probe which centrality property most influences the robustness of the collective dynamics in these heterogeneous networks. Significantly, we find clear evidence that the betweeness centrality of the perturbed node is more crucial for dynamical robustness, than closeness centrality or degree of the node. This result is important in deciding which nodes to safeguard in order to maintain the collective state of this network against targeted localized attacks.
We investigate the collective dynamics of chaotic multi-stable Duffing oscillators connected in different network topologies, ranging from star and ring networks, to scale-free networks. We estimate the resilience of such networks by introducing a va
In this work, we study the dynamical robustness in a system consisting of both active and inactive oscillators. We analytically show that the dynamical robustness of such system is determined by the cross link density between active and inactive subp
Scholars, advertisers and political activists see massive online social networks as a representation of social interactions that can be used to study the propagation of ideas, social bond dynamics and viral marketing, among others. But the linked str
We study the problem of finding solutions to the stable matching problem that are robust to errors in the input and we obtain a polynomial time algorithm for a special class of errors. In the process, we also initiate work on a new structural questio
We study the Kuramoto-Sakaguchi (KS) model composed by any N identical phase oscillators symmetrically coupled. Ranging from local (one-to-one, R = 1) to global (all-to-all, R = N/2) couplings, we derive the general solution that describes the networ