ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional topological semimetal states in monolayers Cu$_2$Ge, Fe$_2$Ge, and Fe$_2$Sn

107   0   0.0 ( 0 )
 نشر من قبل Chongze Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experimental realizations of the topological semimetal states in several monolayer systems are very attractive because of their exotic quantum phenomena and technological applications. Based on first-principles density-functional theory calculations including spin-orbit coupling, we here explore the drastically different two-dimensional (2D) topological semimetal states in three monolayers Cu$_2$Ge, Fe$_2$Ge, and Fe$_2$Sn, which are isostructural with a combination of the honeycomb Cu or Fe lattice and the triangular Ge or Sn lattice. We find that (i) the nonmagnetic (NM) Cu$_{2}$Ge monolayer having a planar geometry exhibits the massive Dirac nodal lines, (ii) the ferromagentic (FM) Fe$_2$Ge monolayer having a buckled geometry exhibits the massive Weyl points, and (iii) the FM Fe$_2$Sn monolayer having a planar geometry and an out-of-plane magnetic easy axis exhibits the massless Weyl nodal lines. It is therefore revealed that mirror symmetry cannot protect the four-fold degenerate Dirac nodal lines in the NM Cu$_{2}$Ge monolayer, but preserves the doubly degenerate Weyl nodal lines in the FM Fe$_{2}$Sn monolayer. Our findings demonstrate that the interplay of crystal symmetry, magnetic easy axis, and band topology is of importance for tailoring various 2D topological states in Cu$_2$Ge, Fe$_2$Ge, and Fe$_2$Sn monlayers.



قيم البحث

اقرأ أيضاً

131 - T. Masuda , K. Kakurai , 2009
We study $S=1/2$ dimer excitation in a coupled chain and dimer compound Cu$_2$Fe$_2$Ge$_4$O$_{13} by inelastic neutron scattering technique. The Zeeman split of the dimer triplet by a staggered field is observed at low temperature. With the increase of temperature the effect of random field is detected by a drastic broadening of the triplet excitation. Basic dynamics of dimer in the staggered and random fields are experimentally identified in Cu$_2$Fe$_2$Ge$_4$O$_{13}.
Cu$_2$Fe$_2$Ge$_4$O$_{13}$ is a bicomponent compound that consists of Cu dimers and Fe chains with separate energy scale. By inelastic neutron scattering technique with high-energy resolution we observed the indirect Fe - Fe exchange coupling by way of the Cu dimers. The obtained parameters of the effective indirect interaction and related superexchange interactions are consistent with those estimated semi-statically. The consistency reveals that the Cu dimers play the role of nonmagnetic media in the indirect magnetic interaction.
The unusual magnetic properties of a novel low-dimensional quantum ferrimagnet Cu$_2$Fe$_2$Ge$_4$O$_{13}$ are studied using bulk methods, neutron diffraction and inelastic neutron scattering. It is shown that this material can be described in terms o f two low-dimensional quantum spin subsystems, one gapped and the other gapless, characterized by two distinct energy scales. Long-range magnetic ordering observed at low temperatures is a cooperative phenomenon caused by weak coupling of these two spin networks.
Systems with embedded magnetic ions that exhibit a competition between magnetic order and disorder down to absolute zero can display unusual low temperature behaviors of the resistivity, susceptibility, and specific heat. Moreover, the dynamic respon se of such a system can display hyperscaling behavior in which the relaxation back to equilibrium when an amount of energy E is given to the system at temperature T only depends on the ratio E/T. Ce(Fe$_{0.755}$Ru$_{0.245}$)$_2$Ge$_2$ is a system that displays these behaviors. We show that these complex behaviors are rooted in a fragmentation of the magnetic lattice upon cooling caused by a distribution of local Kondo screening temperatures, and that the hyperscaling behavior can be attributed to the flipping of the total magnetic moment of magnetic clusters that spontaneously form and order upon cooling. We present our arguments based on the review of two-decades worth of neutron scattering and transport data on this system, augmented with new polarized neutron scattering experiments.
426 - Qiunan Xu , Enke Liu , Wujun Shi 2017
Very recently, the half-metallic compound Co$_3$Sn$_2$S$_2$ was predicted to be a magnetic WSM with Weyl points only 60 meV above the Fermi level ($E_F$). Owing to the low charge carrier density and large Berry curvature induced, Co$_3$Sn$_2$S$_2$ po ssesses both a large anomalous Hall conductivity (AHC) and a large anomalous Hall angle (AHA), which provide strong evidence for the existence of Weyl points in Co$_3$Sn$_2$S$_2$. In this work, we theoretically studied the surface topological feature of Co$_3$Sn$_2$S$_2$ and its counterpart Co$_3$Sn$_2$Se$_2$. By cleaving the sample at the weak Sn-S/Se bonds, one can achieve two different surfaces terminated with Sn and S/Se atoms, respectively. The resulting Fermi arc related states can range from the energy of the Weyl points to $E_F$-0.1 eV in the Sn-terminated surface. Therefore, it should be possible to observe the Fermi arcs in angle-resolved photoemission spectroscopy (ARPES) measurements. Furthermore, in order to simulate quasiparticle interference (QPI) in scanning tunneling microscopy (STM) measurements, we also calculated the joint density of states (JDOS), which revealed that the QPI patterns arising from Fermi arc related scatterings are clearly visible for both terminals. This work would be helpful for a comprehensive understanding of the topological properties of these two magnetic WSMs and further ARPES and STM measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا