ﻻ يوجد ملخص باللغة العربية
Systems with embedded magnetic ions that exhibit a competition between magnetic order and disorder down to absolute zero can display unusual low temperature behaviors of the resistivity, susceptibility, and specific heat. Moreover, the dynamic response of such a system can display hyperscaling behavior in which the relaxation back to equilibrium when an amount of energy E is given to the system at temperature T only depends on the ratio E/T. Ce(Fe$_{0.755}$Ru$_{0.245}$)$_2$Ge$_2$ is a system that displays these behaviors. We show that these complex behaviors are rooted in a fragmentation of the magnetic lattice upon cooling caused by a distribution of local Kondo screening temperatures, and that the hyperscaling behavior can be attributed to the flipping of the total magnetic moment of magnetic clusters that spontaneously form and order upon cooling. We present our arguments based on the review of two-decades worth of neutron scattering and transport data on this system, augmented with new polarized neutron scattering experiments.
We have performed magnetic susceptibility, specific heat, resistivity, and inelastic neutron scattering measurements on a single crystal of the heavy Fermion compound Ce(Ni$_{0.935}$Pd$_{0.065}$)$_2$Ge$_2$, which is believed to be close to a quantum
Electric resistivity, specific heat, magnetic susceptibility, and inelastic neutron scattering experiments were performed on a single crystal of the heavy fermion compound Ce(Ni$_{0.935}$Pd$_{0.065}$)$_2$Ge$_2$ in order to study the spin fluctuations
Polycrystalline samples of Ce(Cu$_{1-x}$Co$_x$)$_2$Ge$_2$ were investigated by means of electrical resistivity $rho$($T$), magnetic susceptibility $chi$($T$), specific heat $C$$_p$($T$) and thermo electric power $S$($T$) measurements. The long-range
We present an extensive study of the ferromagnetic heavy fermion compound U$_4$Ru$_7$Ge$_6$. Measurements of electrical resistivity, specific heat and magnetic properties show that U$_4$Ru$_7$Ge$_6$ orders ferromagnetically at ambient pressure with a
We investigated Sr$_3$Ru$_2$O$_7$, a quantum critical metal that shows a metamagnetic quantum phase transition and electronic nematicity, through density functional calculations. These predict a ferromagnetic ground state in contrast to the experimen