ﻻ يوجد ملخص باللغة العربية
The unusual magnetic properties of a novel low-dimensional quantum ferrimagnet Cu$_2$Fe$_2$Ge$_4$O$_{13}$ are studied using bulk methods, neutron diffraction and inelastic neutron scattering. It is shown that this material can be described in terms of two low-dimensional quantum spin subsystems, one gapped and the other gapless, characterized by two distinct energy scales. Long-range magnetic ordering observed at low temperatures is a cooperative phenomenon caused by weak coupling of these two spin networks.
We study $S=1/2$ dimer excitation in a coupled chain and dimer compound Cu$_2$Fe$_2$Ge$_4$O$_{13} by inelastic neutron scattering technique. The Zeeman split of the dimer triplet by a staggered field is observed at low temperature. With the increase
Cu$_2$Fe$_2$Ge$_4$O$_{13}$ is a bicomponent compound that consists of Cu dimers and Fe chains with separate energy scale. By inelastic neutron scattering technique with high-energy resolution we observed the indirect Fe - Fe exchange coupling by way
We report the results of a $^{45}$Sc nuclear magnetic resonance (NMR) study on the quasi-one-dimensional compound Cu$_2$Sc$_2$Ge$_4$O$_{13}$ at temperatures between 4 and 300 K. This material has been a subject of current interest due to indications
Magnetic excitations of the recently discovered frustrated spin-1/2 two-leg ladder system Li$_2$Cu$_2$O(SO$_4$)$_2$ are investigated using inelastic neutron scattering, magnetic susceptibility and infrared absorption measurements. Despite the presenc
Recent experimental realizations of the topological semimetal states in several monolayer systems are very attractive because of their exotic quantum phenomena and technological applications. Based on first-principles density-functional theory calcul