ﻻ يوجد ملخص باللغة العربية
We generalize the Kolmogorov continuity theorem and prove the continuity of a class of stochastic fields with the parameter. As an application, we derive the continuity of solutions for nonlocal stochastic parabolic equations driven by non-Gaussian L{e}vy noises.
We study the weak limits of solutions to SDEs [dX_n(t)=a_nbigl(X_n(t)bigr),dt+dW(t),] where the sequence ${a_n}$ converges in some sense to $(c_- 1mkern-4.5mumathrm{l}_{x<0}+c_+ 1mkern-4.5mumathrm{l}_{x>0})/x+gammadelta_0$. Here $delta_0$ is the Dira
We consider a particle undergoing Brownian motion in Euclidean space of any dimension, forced by a Gaussian random velocity field that is white in time and smooth in space. We show that conditional on the velocity field, the quenched density of the p
Let (X_n) be a sequence of random variables (with values in a separable metric space) and (N_n) a sequence of random indices. Conditions for X_{N_n} to converge stably (in particular, in distribution) are provided. Some examples, where such condition
In this paper we study the moderate deviations for the magnetization of critical Curie-Weiss model. Chen, Fang and Shao considered a similar problem for non-critical model by using Stein method. By direct and simple arguments based on Laplace method,
We establish a central limit theorem and prove a moderate deviation principle for inviscid stochastic Burgers equation. Due to the lack of viscous term, this is done in the framework of kinetic solution. The weak convergence method and doubling variables method play a key role.