ﻻ يوجد ملخص باللغة العربية
Let (X_n) be a sequence of random variables (with values in a separable metric space) and (N_n) a sequence of random indices. Conditions for X_{N_n} to converge stably (in particular, in distribution) are provided. Some examples, where such conditions work but those already existing fail, are given as well. Key words and phrases: Anscombe theorem, Exchangeability, Random indices, Random sums, Stable convergence
For probability measures on a complete separable metric space, we present sufficient conditions for the existence of a solution to the Kantorovich transportation problem. We also obtain sufficient conditions (which sometimes also become necessary) fo
We describe a new framework of a sublinear expectation space and the related notions and results of distributions, independence. A new notion of G-distributions is introduced which generalizes our G-normal-distribution in the sense that mean-uncertai
Given ${X_k}$ is a martingale difference sequence. And given another ${Y_k}$ which has dependency within the sequence. Assume ${X_k}$ is independent with ${Y_k}$, we study the properties of the sums of product of two sequences $sum_{k=1}^{n} X_k Y_k$
We consider the problem of optimal transportation with quadratic cost between a empirical measure and a general target probability on R d , with d $ge$ 1. We provide new results on the uniqueness and stability of the associated optimal transportation
Our purpose is to prove central limit theorem for countable nonhomogeneous Markov chain under the condition of uniform convergence of transition probability matrices for countable nonhomogeneous Markov chain in Ces`aro sense. Furthermore, we obtain a