ﻻ يوجد ملخص باللغة العربية
We study the weak limits of solutions to SDEs [dX_n(t)=a_nbigl(X_n(t)bigr),dt+dW(t),] where the sequence ${a_n}$ converges in some sense to $(c_- 1mkern-4.5mumathrm{l}_{x<0}+c_+ 1mkern-4.5mumathrm{l}_{x>0})/x+gammadelta_0$. Here $delta_0$ is the Dirac delta function concentrated at zero. A limit of ${X_n}$ may be a Bessel process, a skew Bessel process, or a mixture of Bessel processes.
Mathematical mean-field approaches play an important role in different fields of Physics and Chemistry, but have found in recent works also their application in Economics, Finance and Game Theory. The objective of our paper is to investigate a specia
We solve a class of BSDE with a power function $f(y) = y^q$, $q > 1$, driving its drift and with the terminal boundary condition $ xi = infty cdot mathbf{1}_{B(m,r)^c}$ (for which $q > 2$ is assumed) or $ xi = infty cdot mathbf{1}_{B(m,r)}$, where $B
We consider a particle undergoing Brownian motion in Euclidean space of any dimension, forced by a Gaussian random velocity field that is white in time and smooth in space. We show that conditional on the velocity field, the quenched density of the p
Let ${u(t,,x)}_{tge 0, xin mathbb{R}^d}$ denote the solution of a $d$-dimensional nonlinear stochastic heat equation that is driven by a Gaussian noise, white in time with a homogeneous spatial covariance that is a finite Borel measure $f$ and satisf
We provide the dual result of the Yamada-Watanabe theorem for mild solutions to semilinear stochastic partial differential equations with path-dependent coefficients. An essential tool is the so-called method of the moving frame, which allows us to r