ﻻ يوجد ملخص باللغة العربية
After characterizing the integrable discrete analogue of the Eulers elastica, we focus our attention on the problem of approximating a given discrete planar curve by an appropriate discrete Eulers elastica. We carry out the fairing process via a $L^2!$-distance minimization to avoid the numerical instabilities. The optimization problem is solved via a gradient-driven optimization method (IPOPT). This problem is non-convex and the result strongly depends on the initial guess, so that we use a discrete analogue of the algorithm provided by Brander et al., which gives an initial guess to the optimization method.
In this paper we consider the log-aesthetic curves and their generalization which are used in CAGD. We consider those curves under similarity geometry and characterize them as stationary integrable flow on plane curves which is governed by the Burger
In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformat
We study deformations of plane curves in the similarity geometry. It is known that continuous deformations of smooth curves are described by the Burgers hierarchy. In this paper, we formulate the discrete deformation of discrete plane curves describe
A linkage mechanism consists of rigid bodies assembled by joints which can be used to translate and transfer motion from one form in one place to another. In this paper, we are particularly interested in a family of spacial linkage mechanisms which c
The local induction equation, or the binormal flow on space curves is a well-known model of deformation of space curves as it describes the dynamics of vortex filaments, and the complex curvature is governed by the nonlinear Schrodinger equation (NLS