ترغب بنشر مسار تعليمي؟ اضغط هنا

Linkage Mechanisms Governed by Integrable Deformations of Discrete Space Curves

154   0   0.0 ( 0 )
 نشر من قبل Kenji Kajiwara
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A linkage mechanism consists of rigid bodies assembled by joints which can be used to translate and transfer motion from one form in one place to another. In this paper, we are particularly interested in a family of spacial linkage mechanisms which consist of $n$-copies of a rigid body joined together by hinges to form a ring. Each hinge joint has its own axis of revolution and rigid bodies joined to it can be freely rotated around the axis. The family includes the famous threefold symmetric Bricard6R linkage also known as the Kaleidocycle, which exhibits a characteristic turning over motion. We can model such a linkage as a discrete closed curve in $mathbb{R}^3$ with a constant torsion up to sign. Then, its motion is described as the deformation of the curve preserving torsion and arc length. We describe certain motions of this object that are governed by the semi-discrete mKdV equations, where infinitesimally the motion of each vertex is confined in the osculating plane.

قيم البحث

اقرأ أيضاً

In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformat ion on the osculating plane which satisfies the isoperimetric condition. The curve is reconstructed from the deformation data by using the Sym-Tafel formula. The isoperimetric equidistant deformation of the space curves does not preserve the torsion in general. However, it is possible to construct the torsion-preserving deformation by tuning the deformation parameters. Further, it is also possible to make an arbitrary choice of the deformation described by the discrete mKdV equation or by the discrete sine-Gordon equation at each step. We finally show that the discrete deformation of discrete space curves yields the discrete K-surfaces.
154 - B.G.Konopelchenko 2009
Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. A theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the Deformation Driving Algebra and governed by the central system of equations. It is demonstrated that many discrete equations like discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful.An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.
138 - B.G.Konopelchenko 2008
Discrete and q-difference deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by a central system of discrete or q-difference equations which in particular cases represent discrete and q-differenc
In this paper, we consider a class of plane curves called log-aesthetic curves and their generalization which are used in computer aided geometric design. We consider these curves in the framework of the similarity geometry and characterize them as i nvariant curves under the integrable flow on plane curves which is governed by the Burgers equation. We propose a variational principle for these curves, leading to the stationary Burgers equation as the Euler-Lagrange equation. As an application of the formulation developed here, we propose a discretization of these curves and the associated variational principle which preserves the underlying integrable structure. We finally present algorithms for the generation of discrete log-aesthetic curves for given ${rm G}^1$ data based on the similarity geometry. Our method is able to generate $S$-shaped discrete curves with an inflection as well as $C$-shaped curves according to the boundary condition. The resulting discrete curves are regarded as self-adaptive discretization and thus high-quality even with a small number of points.
206 - B.G.Konopelchenko 2008
Deformations of the structure constants for a class of associative noncommutative algebras generated by Deformation Driving Algebras (DDAs) are defined and studied. These deformations are governed by the Central System (CS). Such a CS is studied for the case of DDA being the algebra of shifts. Concrete examples of deformations for the three-dimensional algebra governed by discrete and mixed continuous-discrete Boussinesq (BSQ) and WDVV equations are presented. It is shown that the theory of the Darboux transformations, at least for the BSQ case, is completely incorporated into the proposed scheme of deformations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا