ﻻ يوجد ملخص باللغة العربية
The local induction equation, or the binormal flow on space curves is a well-known model of deformation of space curves as it describes the dynamics of vortex filaments, and the complex curvature is governed by the nonlinear Schrodinger equation (NLS). In this paper, we present its discrete analogue, namely, a model of deformation of discrete space curves by the discrete nonlinear Schrodinger equation (dNLS). We also present explicit formulas for both NLS and dNLS flows in terms of the $tau$ function of the 2-component KP hierarchy.
In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformat
A linkage mechanism consists of rigid bodies assembled by joints which can be used to translate and transfer motion from one form in one place to another. In this paper, we are particularly interested in a family of spacial linkage mechanisms which c
After characterizing the integrable discrete analogue of the Eulers elastica, we focus our attention on the problem of approximating a given discrete planar curve by an appropriate discrete Eulers elastica. We carry out the fairing process via a $L^2
We study deformations of plane curves in the similarity geometry. It is known that continuous deformations of smooth curves are described by the Burgers hierarchy. In this paper, we formulate the discrete deformation of discrete plane curves describe
We show how singularities shape the evolution of rational discrete dynamical systems. The stabilisation of the form of the iterates suggests a description providing among other things generalised Hirota form, exact evaluation of the algebraic entropy