ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing the best reply strategy and mean field games: the stationary case

362   0   0.0 ( 0 )
 نشر من قبل Matt Barker
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Mean field games (MFGs) and the best reply strategy (BRS) are two methods of describing competitive optimisation of systems of interacting agents. The latter can be interpreted as an approximation of the respective MFG system. In this paper we present a systematic analysis and comparison of the two approaches in the stationary case. We provide novel existence and uniqueness results for the stationary boundary value problems related to the MFG and BRS formulations, and we present an analytical and numerical comparison of the two paradigms in a variety of modelling situations.



قيم البحث

اقرأ أيضاً

71 - Minyi Huang , Yan Ma 2021
This paper considers mean field games in a multi-agent Markov decision process (MDP) framework. Each player has a continuum state and binary action, and benefits from the improvement of the condition of the overall population. Based on an infinite ho rizon discounted individual cost, we show existence of a stationary equilibrium, and prove its uniqueness under a positive externality condition. We further analyze comparative statics of the stationary equilibrium by quantitatively determining the impact of the effort cost.
We analyze a (possibly degenerate) second order mean field games system of partial differential equations. The distinguishing features of the model considered are (1) that it is not uniformly parabolic, including the first order case as a possibility , and (2) the coupling is a local operator on the density. As a result we look for weak, not smooth, solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as minimizers of two optimal control problems. We also show that such solutions are stable with respect to the data, so that in particular the degenerate case can be approximated by a uniformly parabolic (viscous) perturbation.
We address the numerical approximation of Mean Field Games with local couplings. For power-like Hamiltonians, we consider both unconstrained and constrained stationary systems with density constraints in order to model hard congestion effects. For fi nite difference discretizations of the Mean Field Game system, we follow a variational approach. We prove that the aforementioned schemes can be obtained as the optimality system of suitably defined optimization problems. In order to prove the existence of solutions of the scheme with a variational argument, the monotonicity of the coupling term is not used, which allow us to recover general existence results. Next, assuming next that the coupling term is monotone, the variational problem is cast as a convex optimization problem for which we study and compare several proximal type methods. These algorithms have several interesting features, such as global convergence and stability with respect to the viscosity parameter, which can eventually be zero. We assess the performance of the methods via numerical experiments.
We propose a new viewpoint on variational mean-field games with diffusion and quadratic Hamiltonian. We show the equivalence of such mean-field games with a relative entropy minimization at the level of probabilities on curves. We also address the ti me-discretization of such problems, establish $Gamma$-convergence results as the time step vanishes and propose an efficient algorithm relying on this entropic interpretation as well as on the Sinkhorn scaling algorithm.
Mean Field Games with state constraints are differential games with infinitely many agents, each agent facing a constraint on his state. The aim of this paper is to provide a meaning of the PDE system associated with these games, the so-called Mean F ield Game system with state constraints. For this, we show a global semiconvavity property of the value function associated with optimal control problems with state constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا