ﻻ يوجد ملخص باللغة العربية
We propose a new viewpoint on variational mean-field games with diffusion and quadratic Hamiltonian. We show the equivalence of such mean-field games with a relative entropy minimization at the level of probabilities on curves. We also address the time-discretization of such problems, establish $Gamma$-convergence results as the time step vanishes and propose an efficient algorithm relying on this entropic interpretation as well as on the Sinkhorn scaling algorithm.
We analyze a (possibly degenerate) second order mean field games system of partial differential equations. The distinguishing features of the model considered are (1) that it is not uniformly parabolic, including the first order case as a possibility
We study a general class of entropy-regularized multi-variate LQG mean field games (MFGs) in continuous time with $K$ distinct sub-population of agents. We extend the notion of actions to action distributions (exploratory actions), and explicitly der
Entropy regularization has been extensively adopted to improve the efficiency, the stability, and the convergence of algorithms in reinforcement learning. This paper analyzes both quantitatively and qualitatively the impact of entropy regularization
Mean Field Games with state constraints are differential games with infinitely many agents, each agent facing a constraint on his state. The aim of this paper is to provide a meaning of the PDE system associated with these games, the so-called Mean F
Mean field games (MFGs) and the best reply strategy (BRS) are two methods of describing competitive optimisation of systems of interacting agents. The latter can be interpreted as an approximation of the respective MFG system. In this paper we presen