ﻻ يوجد ملخص باللغة العربية
We address the numerical approximation of Mean Field Games with local couplings. For power-like Hamiltonians, we consider both unconstrained and constrained stationary systems with density constraints in order to model hard congestion effects. For finite difference discretizations of the Mean Field Game system, we follow a variational approach. We prove that the aforementioned schemes can be obtained as the optimality system of suitably defined optimization problems. In order to prove the existence of solutions of the scheme with a variational argument, the monotonicity of the coupling term is not used, which allow us to recover general existence results. Next, assuming next that the coupling term is monotone, the variational problem is cast as a convex optimization problem for which we study and compare several proximal type methods. These algorithms have several interesting features, such as global convergence and stability with respect to the viscosity parameter, which can eventually be zero. We assess the performance of the methods via numerical experiments.
We study a numerical approximation of a time-dependent Mean Field Game (MFG) system with local couplings. The discretization we consider stems from a variational approach described in [Briceno-Arias, Kalise, and Silva, SIAM J. Control Optim., 2017] f
This paper considers mean field games in a multi-agent Markov decision process (MDP) framework. Each player has a continuum state and binary action, and benefits from the improvement of the condition of the overall population. Based on an infinite ho
Mean field games are concerned with the limit of large-population stochastic differential games where the agents interact through their empirical distribution. In the classical setting, the number of players is large but fixed throughout the game. Ho
We analyze a (possibly degenerate) second order mean field games system of partial differential equations. The distinguishing features of the model considered are (1) that it is not uniformly parabolic, including the first order case as a possibility
Entropy regularization has been extensively adopted to improve the efficiency, the stability, and the convergence of algorithms in reinforcement learning. This paper analyzes both quantitatively and qualitatively the impact of entropy regularization