ﻻ يوجد ملخص باللغة العربية
We implement the Bogoliubov-de Gennes (BdG) equation in a screened Korringa-Kohn-Rostoker (KKR) method for solving, self-consistently, the superconducting state for 3d crystals. This method combines the full complexity of the underlying electronic structure and Fermi surface geometry with a simple phenomenological parametrisation for the superconductivity. We apply this theoretical framework to the known s-wave superconductors Nb, Pb, and MgB$_2$. In these materials multiple distinct peaks at the gap in the density of states were observed, showing significant gap anisotropy which is in good agreement with experiment. Qualitatively, the results can be explained in terms of the k-dependent Fermi velocities on the Fermi surface sheets exploiting concepts from BCS theory.
Recent angle-resolved spectroscopy in BiS$_2$-based superconductors has indicated that the superconducting gap amplitude possesses remarkable anisotropy and/or a sign change on a small Fermi pocket around $X$ point. It implies a possibility of an unc
We implement the Bogoliubov-de Gennes (BdG) equation in real-space using the screened Korringa-Kohn-Rostoker (KKR) method. This allows us to solve, self-consistently, the superconducting state for 3d crystals including substitutional impurities with
The free energy, non-gradient terms of the Ginzburg-Landau expansion, and the jump of the specific heat of a multiband anisotropic-gap clean BCS superconductor are derived in the framework of a separable-kernel approximation. Results for a two-band s
Disorder - impurities and defects violating an ideal order - is always present in solids. It can result in interesting and sometimes unexpected effects in multiband superconductors. Especially if the superconductivity is unconventional thus having ot
We investigate pairing mechanism in multiband superconductors. To put our feet on firm ground, unbiased renormalization group analysis is carried out for iron-based superconductors. It is quite remarkable that, after integrating out quantum fluctuati