ﻻ يوجد ملخص باللغة العربية
We implement the Bogoliubov-de Gennes (BdG) equation in real-space using the screened Korringa-Kohn-Rostoker (KKR) method. This allows us to solve, self-consistently, the superconducting state for 3d crystals including substitutional impurities with a full normal-state DFT band structure. We apply the theoretical framework to bulk Nb with impurities. Without impurities, Nb has an anisotropic gap structure with two distinct peaks around the Fermi level. In the presence of non-magnetic impurities those peaks are broadened due to the scattering between the two bulk superconducting gaps, however the peaks remain separated. As a second example of self-consistent real-space solutions of the BdG equations we examine superconducting clusters embedded within a non-superconducting bulk metallic host. This allows us to estimate the coherence length of the superconductor and we show that, within our framework, the coherence length of the superconductor is related to the inverse of the gap size, just as in bulk BCS theory.
Disorder - impurities and defects violating an ideal order - is always present in solids. It can result in interesting and sometimes unexpected effects in multiband superconductors. Especially if the superconductivity is unconventional thus having ot
Within the framework of the kinetic energy driven superconducting mechanism, the effect of the extended impurity scatterers on the quasiparticle transport of cuprate superconductors in the superconducting state is studied based on the nodal approxima
We implement the Bogoliubov-de Gennes (BdG) equation in a screened Korringa-Kohn-Rostoker (KKR) method for solving, self-consistently, the superconducting state for 3d crystals. This method combines the full complexity of the underlying electronic st
We present an textit{ab initio} theory for superconductors, based on a unique mapping between the statistical density operator at equilibrium, on the one hand, and the corresponding one-body reduced density matrix $gamma$ and the anomalous density $c
We propose a simple way to parameterize the gap function in iron pnictides. The key idea is to use orbital representation, not band representation, and to assume real-space short-range pairing. Our parameterization reproduces fairly well the structur