ﻻ يوجد ملخص باللغة العربية
The free energy, non-gradient terms of the Ginzburg-Landau expansion, and the jump of the specific heat of a multiband anisotropic-gap clean BCS superconductor are derived in the framework of a separable-kernel approximation. Results for a two-band superconductor, d-wave superconductor, and some recent models for MgB_2 are derived as special cases.
We implement the Bogoliubov-de Gennes (BdG) equation in a screened Korringa-Kohn-Rostoker (KKR) method for solving, self-consistently, the superconducting state for 3d crystals. This method combines the full complexity of the underlying electronic st
Disorder - impurities and defects violating an ideal order - is always present in solids. It can result in interesting and sometimes unexpected effects in multiband superconductors. Especially if the superconductivity is unconventional thus having ot
We consider a problem of superconductivity coexistence with the spin-density-wave order in disordered multiband metals. It is assumed that random variations of the disorder potential on short length scales render the interactions between electrons to
We study the dynamical quasiparticle scattering by spin and charge fluctuations in Fe-based pnictides within a five-orbital model with on-site interactions. The leading contribution to the scattering rate is calculated from the second-order diagrams
We investigate pairing mechanism in multiband superconductors. To put our feet on firm ground, unbiased renormalization group analysis is carried out for iron-based superconductors. It is quite remarkable that, after integrating out quantum fluctuati