ﻻ يوجد ملخص باللغة العربية
Manipulating the global $PT$ symmetry of a non-Hermitian composite system is a rather significative and challenging task. Here, we investigate Floquet control of global $PT$ symmetry in 2D arrays of quadrimer waveguides with transverse periodic structure along $x$-axis and longitudinal periodic modulation along $z$-axis. For unmodulated case with inhomogeneous inter- and intra- quadrimer coupling strength $kappa_1 eqkappa$, in addition to conventional global $PT$-symmetric phase and $PT$-symmetry-breaking phase, we find that there is exotic phase where global $PT$ symmetry is broken under open boundary condition, whereas it still is unbroken under periodical boundary condition. The boundary of phase is analytically given as $kappa_1geqkappa+sqrt{2}$ and $1leqgammaleq2$, where there exists a pair of zero-energy edge states with purely imaginary energy eigenvalues localized at the left boundary, whereas other $4N-2$ eigenvalues are real. Especially, the domain of the exotic phase can be manipulated narrow and even disappeared by tuning modulation parameter. More interestingly, whether or not the array has initial global $PT$ symmetry, periodic modulation not only can restore the broken global $PT$ symmetry, but also can control it by tuning modulation amplitude. Therefore, the global property of transverse periodic structure of such a 2D array can be manipulated by only tuning modulation amplitude of longitudinal periodic modulation.
We demonstrate dispersion tailoring by coupling the even and the odd modes in a line-defect photonic crystal waveguide. Coupling is determined ab-initio using group theory analysis, rather than by trial and error optimisation of the design parameters
Advances in topological photonics and non-Hermitian optics have drastically changed our perception on how interdisciplinary concepts may empower unprecedented applications. Bridging the two areas could uncover the reciprocity between topology and non
We study the Floquet edge states in arrays of periodically curved optical waveguides described by the modulated Su-Schrieffer-Heeger model. Beyond the bulk-edge correspondence, our study explores the interplay between band topology and periodic modul
We construct dark solitons in the recently introduced model of the nonlinear dual-core coupler with the mutually balanced gain and loss applied to the two cores, which is a realization of parity-time symmetry in nonlinear optics. The main issue is st
We present a new concept of an integrated optics component capable of measuring the complex amplitudes of the modes at the tip of a multimode waveguide. The device uses a photonic lantern to split the optical power carried by an $N$-modes waveguide a