ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Floquet edge states in periodically curved waveguides

93   0   0.0 ( 0 )
 نشر من قبل Chaohong Lee
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Floquet edge states in arrays of periodically curved optical waveguides described by the modulated Su-Schrieffer-Heeger model. Beyond the bulk-edge correspondence, our study explores the interplay between band topology and periodic modulations. By analysing the quasi-energy spectra and Zak phase, we reveal that, although topological and non-topological edge states can exist for the same parameters, emph{they can not appear in the same spectral gap}. In the high-frequency limit, we find analytically all boundaries between the different phases and study the coexistence of topological and non-topological edge states. In contrast to unmodulated systems, the edge states appear due to either band topology or modulation-induced defects. This means that periodic modulations may not only tune the parametric regions with nontrivial topology, but may also support novel edge states.



قيم البحث

اقرأ أيضاً

144 - Shaon Sahoo , Imke Schneider , 2019
Driving a quantum system periodically in time can profoundly alter its long-time correlations and give rise to exotic quantum states of matter. The complexity of the combination of many-body correlations and dynamic manipulations has the potential to uncover a whole field of new phenomena, but the theoretical and numerical understanding becomes extremely difficult. We now propose a promising numerical method by generalizing the density matrix renormalization group to a superposition of Fourier components of periodically driven many-body systems using Floquet theory. With this method we can study the full time-dependent quantum solution in a large parameter range for all evolution times, beyond the commonly used high-frequency approximations. Numerical results are presented for the isotropic Heisenberg antiferromagnetic spin-1/2 chain under both local(edge) and global driving for spin-spin correlations and temporal fluctuations. As the frequency is lowered, we demonstrate that more and more Fourier components become relevant and determine strong length- and frequency-dependent changes of the quantum correlations that cannot be described by effective static models.
We describe topological edge solitons in a continuous dislocated Lieb array of helical waveguides. The linear Floquet spectrum of this structure is characterized by the presence of two topological gaps with edge states residing in them. A focusing no nlinearity enables families of topological edge solitons bifurcating from the linear edge states. Such solitons are localized both along and across the edge of the array. Due to the non-monotonic dependence of the propagation constant of the edge states on the Bloch momentum, one can construct topological edge solitons that either propagate in different directions along the same boundary or do not move. This allows us to study collisions of edge solitons moving in the opposite directions. Such solitons always interpenetrate each other without noticeable radiative losses; however, they exhibit a spatial shift that depends on the initial phase difference.
We investigate a mechanism to transiently stabilize topological phenomena in long-lived quasi-steady states of isolated quantum many-body systems driven at low frequencies. We obtain an analytical bound for the lifetime of the quasi-steady states whi ch is exponentially large in the inverse driving frequency. Within this lifetime, the quasi-steady state is characterized by maximum entropy subject to the constraint of fixed number of particles in the systems Floquet-Bloch bands. In such a state, all the non-universal properties of these bands are washed out, hence only the topological properties persist.
Topology describes properties that remain unaffected by smooth distortions. Its main hallmark is the emergence of edge states localized at the boundary between regions characterized by distinct topological invariants. This feature offers new opportun ities for robust trapping of light in nano- and micro-meter scale systems subject to fabrication imperfections and to environmentally induced deformations. Here we show lasing in such topological edge states of a one-dimensional lattice of polariton micropillars that implements an orbital version of the Su-Schrieffer-Heeger Hamiltonian. We further demonstrate that lasing in these states persists under local deformations of the lattice. These results open the way to the implementation of chiral lasers in systems with broken time-reversal symmetry and, when combined with polariton interactions, to the study of nonlinear topological photonics.
We theoretically introduce a new type of topological dipole solitons propagating in a Floquet topological insulator based on a kagome array of helical waveguides. Such solitons bifurcate from two edge states belonging to different topological gaps an d have bright envelopes of different symmetries: fundamental for one component, and dipole for the other. The formation of dipole solitons is enabled by unique spectral features of the kagome array which allow the simultaneous coexistence of two topological edge states from different gaps at the same boundary. Notably, these states have equal and nearly vanishing group velocities as well as the same sign of the effective dispersion coefficients. We derive envelope equations describing components of dipole solitons and demonstrate in full continuous simulations that such states indeed can survive over hundreds of helix periods without any noticeable radiation into the bulk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا