ﻻ يوجد ملخص باللغة العربية
We demonstrate dispersion tailoring by coupling the even and the odd modes in a line-defect photonic crystal waveguide. Coupling is determined ab-initio using group theory analysis, rather than by trial and error optimisation of the design parameters. A family of dispersion curves is generated by controlling a single geometrical parameter. This concept is demonstrated experimentally on 1.5mm-long waveguides with very good agreement with theory.
We prove Anderson localization in a disordered photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the photonic crystal waveguide. In such structures, the localization length show
We report enhanced optomechanical coupling by embedding a nano-mechanical beam resonator within an optical race-track resonator. Precise control of the mechanical resonator is achieved by clamping the beam between two low-loss photonic crystal wavegu
We demonstrate enhanced second harmonic generation in a gallium phosphide photonic crystal waveguide with a measured external conversion efficiency of 5$times10^{-7}$/W. Our results are promising for frequency conversion of on-chip integrated emitter
We demonstrate soliton-effect pulse compression in mm-long photonic crystal waveguides resulting from strong anomalous dispersion and self-phase modulation. Compression from 3ps to 580fs, at low pulse energies(~10pJ), is measured via autocorrelation.
We introduce a weakly coupled photonic crystal waveguide as a promising and realistic model for all-optical amplification. A symmetric pillar type coupled photonic crystal waveguide consisting of dielectric rods periodically distributed in a free spa