ﻻ يوجد ملخص باللغة العربية
The computation of excited electronic states with commonly employed (approximate) methods is challenging, typically yielding states of lower quality than the corresponding ground state for a higher computational cost. In this work, we present a mean field method that extends the previously proposed eXcited Constrained DFT (XCDFT) from single Slater determinants to ensemble 1-RDMs for computing low-lying excited states. The method still retains an associated computational complexity comparable to a semilocal DFT calculation while at the same time is capable of approaching states with multireference character. We benchmark the quality of this method on well-established test sets, finding good descriptions of the electronic structure of multireference states and maintaining an overall accuracy for the predicted excitation energies comparable to semilocal TDDFT.
The key feature of nonlocal kinetic energy functionals is their ability to reduce to the Thomas-Fermi functional in the regions of high density and to the von Weizsacker functional in the region of low density/high density gradient. This behavior is
Lanthanide-based single-ion magnetic molecules can have large magnetic hyperfine interactions as well as large magnetic anisotropy. Recent experimental studies reported tunability of these properties by changes of chemical environments or by applicat
Kohn-Sham density functional theory (DFT) has become established as an indispensable tool for investigating aqueous systems of all kinds, including those important in chemistry, surface science, biology and the earth sciences. Nevertheless, many wide
Graphite is the most widely used and among the most widely-studied anode materials for lithium-ion batteries. With increasing demands on lithium batteries to operate at lower temperatures and higher currents, it is crucial to understand lithium inter
We introduce numerical optimization of multi-site support functions in the linear-scaling DFT code CONQUEST. Multi-site support functions, which are linear combinations of pseudo-atomic orbitals on a target atom and those neighbours within a cutoff,