ﻻ يوجد ملخص باللغة العربية
Graphite is the most widely used and among the most widely-studied anode materials for lithium-ion batteries. With increasing demands on lithium batteries to operate at lower temperatures and higher currents, it is crucial to understand lithium intercalation in graphite due to issues associated with lithium plating. Lithium intercalation into graphite has been extensively studied theoretically using density functional theory (DFT) calculations, complemented by experimental studies through X-ray diffraction, spectroscopy, optical imaging and other techniques. In this work, we present a first principles based model using DFT calculations, employing the BEEF-vdW as the exchange correlation functional, and Ising model to determine the phase transformations and subsequently, the thermodynamic intercalation potential diagram. We explore a configurational phase space of about 1 billion structures by accurately determining the important interactions for the Ising model. The BEEF-vdW exchange correlation functional employed accurately captures a range of interactions including vdW, covalent and ionic interactions. We incorporate phonon contributions at finite temperatures and configurational entropy to get high accuracy in free energy and potentials. We utilize the built-in error estimation capabilities of the BEEF-vdW exchange correlation functional and to develop a methodological framework for determining the uncertainty associated with DFT calculated phase diagrams and intercalation potentials. The framework also determines the confidence of each predicted stable phase. The confidence value of a phase can help us to identify regions of solid solutions and phase transformations accurately.
The phase diagram of Zn has been explored up to 140 GPa and 6000 K, by combining optical observations, x-ray diffraction, and ab-initio calculations. In the pressure range covered by this study, Zn is found to retain a hexagonal close-packed crystal
We present results of a theoretical study of 4He films adsorbed on graphite, based on the continuous space worm algorithm. In the first layer, we find a domain-wall phase and a (7/16) registered structure between the commensurate (1/3) and the incomm
We investigate the temperature-pressure phase diagram of BaTiO_3 using a first-principles effective-Hamiltonian approach. We find that the zero-point motion of the ions affects the form of the phase diagram dramatically. Specifically, when the zero-p
The computation of excited electronic states with commonly employed (approximate) methods is challenging, typically yielding states of lower quality than the corresponding ground state for a higher computational cost. In this work, we present a mean
Kohn-Sham density functional theory (DFT) has become established as an indispensable tool for investigating aqueous systems of all kinds, including those important in chemistry, surface science, biology and the earth sciences. Nevertheless, many wide