ﻻ يوجد ملخص باللغة العربية
The key feature of nonlocal kinetic energy functionals is their ability to reduce to the Thomas-Fermi functional in the regions of high density and to the von Weizsacker functional in the region of low density/high density gradient. This behavior is crucial when these functionals are employed in subsystem DFT simulations to approximate the nonadditive kinetic energy. We propose a GGA nonadditive kinetic energy functional which mimics the good behavior of nonlocal functionals retaining the computational complexity of typical semilocal functionals. The new functional reproduces Kohn-Sham DFT and benchmark CCSD(T) interaction energies of weakly interacting dimers in the S22-5 and S66 test sets with a mean absolute deviation well below 1 kcal/mol.
By adopting a divide-and-conquer strategy, subsystem-DFT (sDFT) can dramatically reduce the computational cost of large-scale electronic structure calculations. The key ingredients of sDFT are the nonadditive kinetic energy and exchange-correlation f
Hybrid density functionals show great promise for chemically-accurate first principles calculations, but their high computational cost limits their application in non-trivial studies, such as exploration of reaction pathways of adsorbents on periodic
Molecular adsorption on surfaces plays a central role in catalysis, corrosion, desalination, and many other processes of relevance to industry and the natural world. Few adsorption systems are more ubiquitous or of more widespread importance than tho
Several recent studies have shown that SCAN, a functional belonging to the meta-generalized gradient approximation (MGGA) family, leads to significantly overestimated magnetic moments in itinerant ferromagnetic metals. However, this behavior is not i
The computation of excited electronic states with commonly employed (approximate) methods is challenging, typically yielding states of lower quality than the corresponding ground state for a higher computational cost. In this work, we present a mean