ﻻ يوجد ملخص باللغة العربية
We study exclusive quarkonium production in the dipole picture at next-to-leading order (NLO) accuracy, using the non-relativistic expansion for the quarkonium wavefunction. This process offers one of the best ways to obtain information about gluon distributions at small $x$, in ultraperipheral heavy ion collisions and in deep inelastic scattering. The quarkonium light cone wave functions needed in the dipole picture have typically been available only at tree level, either in phenomenological models or in the nonrelativistic limit. In this paper, we discuss the compatibility of the dipole approach and the non-relativistic expansion and compute NLO relativistic corrections to the quarkonium light-cone wave function in light-cone gauge. Using these corrections we recover results for the NLO decay width of quarkonium to $e^{+}e^{-}$ and we check that the non-relativistic expansion is consistent with ERBL evolution and with B-JIMWLK evolution of the target. The results presented here will allow computing the exclusive quarkonium production rate at NLO once the one loop photon wave function with massive quarks, currently under investigation, is known.
We calculate, for nonzero momentum transfer, the dipole formula for the high energy behaviour of elastic and quasielastic scattering of a virtual photon. We obtain an expression of the nonforward photon impact factor and of the nonforward photon wave function, and we give a physical interpretation.
We have attempted to build first some simplified model to map the interaction of quarks and gluons, which can be contained by their thermodynamical quantity like entropy density, obtained from calculation of lattice quantum chromo dynamics (LQCD). Wi
The existing transformation from a relativistic real scalar field to a complex non-relativistic scalar field by Namjoo, Guth, and Kaiser is generalized from Minkowski space to a more general background metric. In that case the transformation is not p
For a bound state internal wave function respecting parity symmetry, it can be rigorously argued that the mean electric dipole moment must be strictly zero. Thus, both the neutron, viewed as a bound state of three quarks, and the water molecule, view
We have attempted to build a parametric based simplified and analytical model to map the interaction of quarks and gluons in presence of magnetic field, which has been constrained by quark condensate and thermodynamical quantities like pressure, ener