ترغب بنشر مسار تعليمي؟ اضغط هنا

The dipole picture and the non-relativistic expansion

53   0   0.0 ( 0 )
 نشر من قبل Miguel Angel Escobedo Espinosa
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study exclusive quarkonium production in the dipole picture at next-to-leading order (NLO) accuracy, using the non-relativistic expansion for the quarkonium wavefunction. This process offers one of the best ways to obtain information about gluon distributions at small $x$, in ultraperipheral heavy ion collisions and in deep inelastic scattering. The quarkonium light cone wave functions needed in the dipole picture have typically been available only at tree level, either in phenomenological models or in the nonrelativistic limit. In this paper, we discuss the compatibility of the dipole approach and the non-relativistic expansion and compute NLO relativistic corrections to the quarkonium light-cone wave function in light-cone gauge. Using these corrections we recover results for the NLO decay width of quarkonium to $e^{+}e^{-}$ and we check that the non-relativistic expansion is consistent with ERBL evolution and with B-JIMWLK evolution of the target. The results presented here will allow computing the exclusive quarkonium production rate at NLO once the one loop photon wave function with massive quarks, currently under investigation, is known.



قيم البحث

اقرأ أيضاً

We calculate, for nonzero momentum transfer, the dipole formula for the high energy behaviour of elastic and quasielastic scattering of a virtual photon. We obtain an expression of the nonforward photon impact factor and of the nonforward photon wave function, and we give a physical interpretation.
We have attempted to build first some simplified model to map the interaction of quarks and gluons, which can be contained by their thermodynamical quantity like entropy density, obtained from calculation of lattice quantum chromo dynamics (LQCD). Wi th respect to entropy density of the standard non-interacting massless quark gluon plasma (QGP), its interacting values from LQCD simulation are reduced as we go from higher to lower temperature through the cross-over of quark-hadron phase transition. By parameterizing increasing degeneracy factor or increasing interaction-fugacity or decreasing thermal width of quarks and gluons with temperature, we have matched LQCD data.Using that interaction picture, shear viscosity and electrical conductivity are calculated. For getting nearly perfect fluid nature of QGP, interaction might have some role when we consider temperature dependent thermal width.
The existing transformation from a relativistic real scalar field to a complex non-relativistic scalar field by Namjoo, Guth, and Kaiser is generalized from Minkowski space to a more general background metric. In that case the transformation is not p urely algebraic any more but determined by a differential equation. We apply the generalized transformation to a real scalar with $phi^4$ interaction on an Friedmann-Lema^itre-Robertson-Walker cosmologically expanding background and calculate the resulting non-relativistic action up to second order in small parameters. We also show that the transformation can be interpreted as a Bogoliubov transformation between relativistic and non-relativistic creation and annihilation operators and comment on emerging symmetries in the non-relativistic theory.
For a bound state internal wave function respecting parity symmetry, it can be rigorously argued that the mean electric dipole moment must be strictly zero. Thus, both the neutron, viewed as a bound state of three quarks, and the water molecule, view ed as a bound state of ten electrons two protons and an oxygen nucleus, both have zero mean electric dipole moments. Yet, the water molecule is said to have a nonzero dipole moment strength $d=eLambda $ with $Lambda_{H_2O} approx 0.385 dot{A}$. The neutron may also be said to have an electric dipole moment strength with $Lambda_{neutron} approx 0.612 fm$. The neutron analysis can be made experimentally consistent, if one employs a quark-diquark model of neutron structure.
We have attempted to build a parametric based simplified and analytical model to map the interaction of quarks and gluons in presence of magnetic field, which has been constrained by quark condensate and thermodynamical quantities like pressure, ener gy density etc., obtained from the calculation of lattice quantum chromodynamics. To fulfill that mapping, we have assumed a parametric temperature and magnetic field dependent degeneracy factor, average energy, momentum and velocity of quarks and gluons. Implementing this QCD interaction in calculation of transport coefficient at finite magnetic field, we have noticed that magnetic field and interaction both are two dominating sources, for which the values of transport coefficients can be reduced. Though the methodology is not so robust, but with the help of its simple parametric expressions, one can get a quick rough estimation of any phenomenological quantity, influenced by temperature and magnetic field dependent QCD interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا