ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric Dipole Moments and Polarizability in the Quark-Diquark Model of the Neutron

124   0   0.0 ( 0 )
 نشر من قبل Allan Widom
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a bound state internal wave function respecting parity symmetry, it can be rigorously argued that the mean electric dipole moment must be strictly zero. Thus, both the neutron, viewed as a bound state of three quarks, and the water molecule, viewed as a bound state of ten electrons two protons and an oxygen nucleus, both have zero mean electric dipole moments. Yet, the water molecule is said to have a nonzero dipole moment strength $d=eLambda $ with $Lambda_{H_2O} approx 0.385 dot{A}$. The neutron may also be said to have an electric dipole moment strength with $Lambda_{neutron} approx 0.612 fm$. The neutron analysis can be made experimentally consistent, if one employs a quark-diquark model of neutron structure.



قيم البحث

اقرأ أيضاً

145 - J. Birkhan 2016
The electric dipole strength distribution in Ca-48 between 5 and 25 MeV has been determined at RCNP, Osaka, from proton inelastic scattering experiments at forward angles. Combined with photoabsorption data at higher excitation energy, this enables f or the first time the extraction of the electric dipole polarizability alpha_D(Ca-48) = 2.07(22) fm^3. Remarkably, the dipole response of Ca-48 is found to be very similar to that of Ca-40, consistent with a small neutron skin in Ca-48. The experimental results are in good agreement with ab initio calculations based on chiral effective field theory interactions and with state-of-the-art density-functional calculations, implying a neutron skin in Ca-48 of 0.14 - 0.20 fm.
The background field method for measuring the electric polarizability of the neutron is adapted to the dynamical quark case, resulting in the calculation of (certain space-time integrals over) three- and four-point functions. Particular care is taken to disentangle polarizability effects from the effects of subjecting the neutron to a constant background gauge field; such a field is not a pure gauge on a finite lattice and engenders a mass shift of its own. At a pion mass of m_pi = 759 MeV, a small, slightly negative electric polarizability is found for the neutron.
We note that off the quark mass shell the operators $(p_i+p_f)_mugamma_5$ and $isigma_{mu u}(p_i -p_f)^ ugamma_5$, both of which reduce to $-vec{sigma}cdotvec{E}$ in the non-relativistic limit, are no longer identical. In this paper we explore the ef fects of this difference in the contribution of these quark electric moments to hadronic electric moments.
The electric dipole moments (EDMs) of nucleons are sensitive probes of additional $cal CP$ violation sources beyond the standard model to account for the baryon number asymmetry of the universe. As a fundamental quantity of the nucleon structure, ten sor charge is also a bridge that relates nucleon EDMs to quark EDMs. With a combination of nucleon EDM measurements and tensor charge extractions, we investigate the experimental constraint on quark EDMs, and its sensitivity to $cal CP$ violation sources from new physics beyond the electroweak scale. We obtain the current limits on quark EDMs as $1.27times10^{-24},ecdot{rm cm}$ for the up quark and $1.17times10^{-24},ecdot{rm cm}$ for the down quark at the scale of $4,rm GeV^2$. We also study the impact of future nucleon EDM and tensor charge measurements, and show that upcoming new experiments will improve the constraint on quark EDMs by about three orders of magnitude leading to a much more sensitive probe of new physics models.
512 - Yu-Ji Shi 2020
We present a path-integral hadronization for doubly heavy baryons. The two heavy quarks in the baryon are approximated as a scalar or axial-vector diquark described by a heavy diquark effective theory. The gluon dynamics are represented by a NJL-Mode l interaction for the heavy diquarks and light quarks, which leads to an effective action of the baryon fields after the quark and diquark fields are integrated out. This effective action for doubly heavy baryon includes the electromagnetic and electroweak interactions, as well as the interaction with light mesons. We also verify the Ward-Takahashi identity at the baryon level, obtain the Isgur-Wise function for weak transitions, and calculate the strong coupling constant of the doubly heavy baryon and pion. Numerical studies are also performed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا