ترغب بنشر مسار تعليمي؟ اضغط هنا

From Non-interacting to Interacting Picture of Quark Gluon Plasma in presence of magnetic field and its fluid property

102   0   0.0 ( 0 )
 نشر من قبل Sabyasachi Ghosh
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have attempted to build a parametric based simplified and analytical model to map the interaction of quarks and gluons in presence of magnetic field, which has been constrained by quark condensate and thermodynamical quantities like pressure, energy density etc., obtained from the calculation of lattice quantum chromodynamics. To fulfill that mapping, we have assumed a parametric temperature and magnetic field dependent degeneracy factor, average energy, momentum and velocity of quarks and gluons. Implementing this QCD interaction in calculation of transport coefficient at finite magnetic field, we have noticed that magnetic field and interaction both are two dominating sources, for which the values of transport coefficients can be reduced. Though the methodology is not so robust, but with the help of its simple parametric expressions, one can get a quick rough estimation of any phenomenological quantity, influenced by temperature and magnetic field dependent QCD interaction.



قيم البحث

اقرأ أيضاً

We have attempted to build first some simplified model to map the interaction of quarks and gluons, which can be contained by their thermodynamical quantity like entropy density, obtained from calculation of lattice quantum chromo dynamics (LQCD). Wi th respect to entropy density of the standard non-interacting massless quark gluon plasma (QGP), its interacting values from LQCD simulation are reduced as we go from higher to lower temperature through the cross-over of quark-hadron phase transition. By parameterizing increasing degeneracy factor or increasing interaction-fugacity or decreasing thermal width of quarks and gluons with temperature, we have matched LQCD data.Using that interaction picture, shear viscosity and electrical conductivity are calculated. For getting nearly perfect fluid nature of QGP, interaction might have some role when we consider temperature dependent thermal width.
Fluidity of quark-gluon plasma (QGP) is studied where interaction between quark and gluon is mapped through fugacity in particle distribution function using lattice quantum chromodynamics (LQCD) results.
We study the diffusion properties of the strongly interacting quark-gluon plasma (sQGP) and evaluate the diffusion coefficient matrix for the baryon ($B$), strange ($S$) and electric ($Q$) charges - $kappa_{qq}$ ($q,q = B, S, Q$) and show their depen dence on temperature $T$ and baryon chemical potential $mu_B$. The non-perturbative nature of the sQGP is evaluated within the Dynamical Quasi-Particle Model (DQPM) which is matched to reproduce the equation of state of the partonic matter above the deconfinement temperature $T_c$ from lattice QCD. The calculation of diffusion coefficients is based on two methods: i) the Chapman-Enskog method for the linearized Boltzmann equation, which allows to explore non-equilibrium corrections for the phase-space distribution function in leading order of the Knudsen numbers as well as ii) the relaxation time approximation (RTA). In this work we explore the differences between the two methods. We find a good agreement with the available lattice QCD data in case of the electric charge diffusion coefficient (or electric conductivity) at vanishing baryon chemical potential as well as a qualitative agreement with the recent predictions from the holographic approach for all diagonal components of the diffusion coefficient matrix. The knowledge of the diffusion coefficient matrix is also of special interest for more accurate hydrodynamic simulations.
Jets and photons could play an important role in finding the transport coefficients of the quark-gluon plasma. To this end we analyze their interaction with a non-equilibrium quark-gluon plasma. Using new field-theoretical tools we derive two-point c orrelators for the plasma which show how instabilities evolve in time. This allows us, for the first time, to derive finite rates of interaction with the medium. We furthermore show that coherent, long-wavelength instability fields in the Abelian limit do not modify the rate of photon emission or jet-medium interaction.
Penetrating probes in heavy-ion collisions, like jets and photons, are sensitive to the transport coefficients of the produced quark-gluon plasma, such as shear and bulk viscosity. Quantifying this sensitivity requires a detailed understanding of pho ton emission and jet-medium interaction in a non-equilibrium plasma. Up to now, such an understanding has been hindered by plasma instabilities which arise out of equilibrium and lead to spurious divergences when evaluating the rate of interaction of hard probes with the plasma. In this paper, we show that taking into account the time evolution of an unstable plasma cures these divergences. We calculate the time evolution of gluon two-point correlators in a setup with small initial momentum anisotropy and show that the gluon occupation density grows exponentially at early times. Based on this calculation, we argue for a phenomenological prescription where instability poles are subtracted. Finally, we show that in the Abelian case instability fields do not affect medium-induced photon emission to our order of approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا