ترغب بنشر مسار تعليمي؟ اضغط هنا

On Batch Bayesian Optimization

135   0   0.0 ( 0 )
 نشر من قبل Sayak Ray Chowdhury
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We present two algorithms for Bayesian optimization in the batch feedback setting, based on Gaussian process upper confidence bound and Thompson sampling approaches, along with frequentist regret guarantees and numerical results.



قيم البحث

اقرأ أيضاً

Bayesian optimization (BO) is a powerful approach for optimizing black-box, expensive-to-evaluate functions. To enable a flexible trade-off between the cost and accuracy, many applications allow the function to be evaluated at different fidelities. I n order to reduce the optimization cost while maximizing the benefit-cost ratio, in this paper, we propose Batch Multi-fidelity Bayesian Optimization with Deep Auto-Regressive Networks (BMBO-DARN). We use a set of Bayesian neural networks to construct a fully auto-regressive model, which is expressive enough to capture strong yet complex relationships across all the fidelities, so as to improve the surrogate learning and optimization performance. Furthermore, to enhance the quality and diversity of queries, we develop a simple yet efficient batch querying method, without any combinatorial search over the fidelities. We propose a batch acquisition function based on Max-value Entropy Search (MES) principle, which penalizes highly correlated queries and encourages diversity. We use posterior samples and moment matching to fulfill efficient computation of the acquisition function and conduct alternating optimization over every fidelity-input pair, which guarantees an improvement at each step. We demonstrate the advantage of our approach on four real-world hyperparameter optimization applications.
We study batch normalisation in the context of variational inference methods in Bayesian neural networks, such as mean-field or MC Dropout. We show that batch-normalisation does not affect the optimum of the evidence lower bound (ELBO). Furthermore, we study the Monte Carlo Batch Normalisation (MCBN) algorithm, proposed as an approximate inference technique parallel to MC Dropout, and show that for larger batch sizes, MCBN fails to capture epistemic uncertainty. Finally, we provide insights into what is required to fix this failure, namely having to view the mini-batch size as a variational parameter in MCBN. We comment on the asymptotics of the ELBO with respect to this variational parameter, showing that as dataset size increases towards infinity, the batch-size must increase towards infinity as well for MCBN to be a valid approximate inference technique.
In this work, we investigate black-box optimization from the perspective of frequentist kernel methods. We propose a novel batch optimization algorithm, which jointly maximizes the acquisition function and select points from a whole batch in a holist ic way. Theoretically, we derive regret bounds for both the noise-free and perturbation settings irrespective of the choice of kernel. Moreover, we analyze the property of the adversarial regret that is required by a robust initialization for Bayesian Optimization (BO). We prove that the adversarial regret bounds decrease with the decrease of covering radius, which provides a criterion for generating a point set to minimize the bound. We then propose fast searching algorithms to generate a point set with a small covering radius for the robust initialization. Experimental results on both synthetic benchmark problems and real-world problems show the effectiveness of the proposed algorithms.
The popularity of Bayesian optimization methods for efficient exploration of parameter spaces has lead to a series of papers applying Gaussian processes as surrogates in the optimization of functions. However, most proposed approaches only allow the exploration of the parameter space to occur sequentially. Often, it is desirable to simultaneously propose batches of parameter values to explore. This is particularly the case when large parallel processing facilities are available. These facilities could be computational or physical facets of the process being optimized. E.g. in biological experiments many experimental set ups allow several samples to be simultaneously processed. Batch methods, however, require modeling of the interaction between the evaluations in the batch, which can be expensive in complex scenarios. We investigate a simple heuristic based on an estimate of the Lipschitz constant that captures the most important aspect of this interaction (i.e. local repulsion) at negligible computational overhead. The resulting algorithm compares well, in running time, with much more elaborate alternatives. The approach assumes that the function of interest, $f$, is a Lipschitz continuous function. A wrap-loop around the acquisition function is used to collect batches of points of certain size minimizing the non-parallelizable computational effort. The speed-up of our method with respect to previous approaches is significant in a set of computationally expensive experiments.
We consider black box optimization of an unknown function in the nonparametric Gaussian process setting when the noise in the observed function values can be heavy tailed. This is in contrast to existing literature that typically assumes sub-Gaussian noise distributions for queries. Under the assumption that the unknown function belongs to the Reproducing Kernel Hilbert Space (RKHS) induced by a kernel, we first show that an adaptation of the well-known GP-UCB algorithm with reward truncation enjoys sublinear $tilde{O}(T^{frac{2 + alpha}{2(1+alpha)}})$ regret even with only the $(1+alpha)$-th moments, $alpha in (0,1]$, of the reward distribution being bounded ($tilde{O}$ hides logarithmic factors). However, for the common squared exponential (SE) and Mat{e}rn kernels, this is seen to be significantly larger than a fundamental $Omega(T^{frac{1}{1+alpha}})$ lower bound on regret. We resolve this gap by developing novel Bayesian optimization algorithms, based on kernel approximation techniques, with regret bounds matching the lower bound in order for the SE kernel. We numerically benchmark the algorithms on environments based on both synthetic models and real-world data sets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا