ترغب بنشر مسار تعليمي؟ اضغط هنا

Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive Networks

104   0   0.0 ( 0 )
 نشر من قبل Shibo Li
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Bayesian optimization (BO) is a powerful approach for optimizing black-box, expensive-to-evaluate functions. To enable a flexible trade-off between the cost and accuracy, many applications allow the function to be evaluated at different fidelities. In order to reduce the optimization cost while maximizing the benefit-cost ratio, in this paper, we propose Batch Multi-fidelity Bayesian Optimization with Deep Auto-Regressive Networks (BMBO-DARN). We use a set of Bayesian neural networks to construct a fully auto-regressive model, which is expressive enough to capture strong yet complex relationships across all the fidelities, so as to improve the surrogate learning and optimization performance. Furthermore, to enhance the quality and diversity of queries, we develop a simple yet efficient batch querying method, without any combinatorial search over the fidelities. We propose a batch acquisition function based on Max-value Entropy Search (MES) principle, which penalizes highly correlated queries and encourages diversity. We use posterior samples and moment matching to fulfill efficient computation of the acquisition function and conduct alternating optimization over every fidelity-input pair, which guarantees an improvement at each step. We demonstrate the advantage of our approach on four real-world hyperparameter optimization applications.

قيم البحث

اقرأ أيضاً

We present two algorithms for Bayesian optimization in the batch feedback setting, based on Gaussian process upper confidence bound and Thompson sampling approaches, along with frequentist regret guarantees and numerical results.
How can we efficiently gather information to optimize an unknown function, when presented with multiple, mutually dependent information sources with different costs? For example, when optimizing a robotic system, intelligently trading off computer si mulations and real robot testings can lead to significant savings. Existing methods, such as multi-fidelity GP-UCB or Entropy Search-based approaches, either make simplistic assumptions on the interaction among different fidelities or use simple heuristics that lack theoretical guarantees. In this paper, we study multi-fidelity Bayesian optimization with complex structural dependencies among multiple outputs, and propose MF-MI-Greedy, a principled algorithmic framework for addressing this problem. In particular, we model different fidelities using additive Gaussian processes based on shared latent structures with the target function. Then we use cost-sensitive mutual information gain for efficient Bayesian global optimization. We propose a simple notion of regret which incorporates the cost of different fidelities, and prove that MF-MI-Greedy achieves low regret. We demonstrate the strong empirical performance of our algorithm on both synthetic and real-world datasets.
Microbiome data analyses require statistical models that can simultaneously decode microbes reactions to the environment and interactions among microbes. While a multiresponse linear regression model seems like a straightforward solution, we argue th at treating it as a graphical model is flawed given that the regression coefficient matrix does not encode the conditional dependence structure between response and predictor nodes because it does not represent the adjacency matrix. This observation is especially important in biological settings when we have prior knowledge on the edges from specific experimental interventions that can only be properly encoded under a conditional dependence model. Here, we propose a chain graph model with two sets of nodes (predictors and responses) whose solution yields a graph with edges that indeed represent conditional dependence and thus, agrees with the experimenters intuition on the average behavior of nodes under treatment. The solution to our model is sparse via Bayesian LASSO and is also guaranteed to be the sparse solution to a Conditional Auto-Regressive (CAR) model. In addition, we propose an adaptive extension so that different shrinkage can be applied to different edges to incorporate edge-specific prior knowledge. Our model is computationally inexpensive through an efficient Gibbs sampling algorithm and can account for binary, counting, and compositional responses via appropriate hierarchical structure. We apply our model to a human gut and a soil microbial compositional datasets and we highlight that CAR-LASSO can estimate biologically meaningful network structures in the data. The CAR-LASSO software is available as an R package at https://github.com/YunyiShen/CAR-LASSO.
134 - Xuhui Meng , Hessam Babaee , 2020
We propose a new class of Bayesian neural networks (BNNs) that can be trained using noisy data of variable fidelity, and we apply them to learn function approximations as well as to solve inverse problems based on partial differential equations (PDEs ). These multi-fidelity BNNs consist of three neural networks: The first is a fully connected neural network, which is trained following the maximum a posteriori probability (MAP) method to fit the low-fidelity data; the second is a Bayesian neural network employed to capture the cross-correlation with uncertainty quantification between the low- and high-fidelity data; and the last one is the physics-informed neural network, which encodes the physical laws described by PDEs. For the training of the last two neural networks, we use the Hamiltonian Monte Carlo method to estimate accurately the posterior distributions for the corresponding hyperparameters. We demonstrate the accuracy of the present method using synthetic data as well as real measurements. Specifically, we first approximate a one- and four-dimensional function, and then infer the reaction rates in one- and two-dimensional diffusion-reaction systems. Moreover, we infer the sea surface temperature (SST) in the Massachusetts and Cape Cod Bays using satellite images and in-situ measurements. Taken together, our results demonstrate that the present method can capture both linear and nonlinear correlation between the low- and high-fideilty data adaptively, identify unknown parameters in PDEs, and quantify uncertainties in predictions, given a few scattered noisy high-fidelity data. Finally, we demonstrate that we can effectively and efficiently reduce the uncertainties and hence enhance the prediction accuracy with an active learning approach, using as examples a specific one-dimensional function approximation and an inverse PDE problem.
This paper studies an entropy-based multi-objective Bayesian optimization (MBO). The entropy search is successful approach to Bayesian optimization. However, for MBO, existing entropy-based methods ignore trade-off among objectives or introduce unrel iable approximations. We propose a novel entropy-based MBO called Pareto-frontier entropy search (PFES) by considering the entropy of Pareto-frontier, which is an essential notion of the optimality of the multi-objective problem. Our entropy can incorporate the trade-off relation of the optimal values, and further, we derive an analytical formula without introducing additional approximations or simplifications to the standard entropy search setting. We also show that our entropy computation is practically feasible by using a recursive decomposition technique which has been known in studies of the Pareto hyper-volume computation. Besides the usual MBO setting, in which all the objectives are simultaneously observed, we also consider the decoupled setting, in which the objective functions can be observed separately. PFES can easily adapt to the decoupled setting by considering the entropy of the marginal density for each output dimension. This approach incorporates dependency among objectives conditioned on Pareto-frontier, which is ignored by the existing method. Our numerical experiments show effectiveness of PFES through several benchmark datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا