ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Global Convergence of (Fast) Incremental Expectation Maximization Methods

365   0   0.0 ( 0 )
 نشر من قبل Belhal Karimi
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The EM algorithm is one of the most popular algorithm for inference in latent data models. The original formulation of the EM algorithm does not scale to large data set, because the whole data set is required at each iteration of the algorithm. To alleviate this problem, Neal and Hinton have proposed an incremental version of the EM (iEM) in which at each iteration the conditional expectation of the latent data (E-step) is updated only for a mini-batch of observations. Another approach has been proposed by Cappe and Moulines in which the E-step is replaced by a stochastic approximation step, closely related to stochastic gradient. In this paper, we analyze incremental and stochastic version of the EM algorithm as well as the variance reduced-version of Chen et. al. in a common unifying framework. We also introduce a new version incremental version, inspired by the SAGA algorithm by Defazio et. al. We establish non-asymptotic convergence bounds for global convergence. Numerical applications are presented in this article to illustrate our findings.

قيم البحث

اقرأ أيضاً

Fast Incremental Expectation Maximization (FIEM) is a version of the EM framework for large datasets. In this paper, we first recast FIEM and other incremental EM type algorithms in the {em Stochastic Approximation within EM} framework. Then, we prov ide nonasymptotic bounds for the convergence in expectation as a function of the number of examples $n$ and of the maximal number of iterations $kmax$. We propose two strategies for achieving an $epsilon$-approximate stationary point, respectively with $kmax = O(n^{2/3}/epsilon)$ and $kmax = O(sqrt{n}/epsilon^{3/2})$, both strategies relying on a random termination rule before $kmax$ and on a constant step size in the Stochastic Approximation step. Our bounds provide some improvements on the literature. First, they allow $kmax$ to scale as $sqrt{n}$ which is better than $n^{2/3}$ which was the best rate obtained so far; it is at the cost of a larger dependence upon the tolerance $epsilon$, thus making this control relevant for small to medium accuracy with respect to the number of examples $n$. Second, for the $n^{2/3}$-rate, the numerical illustrations show that thanks to an optimized choice of the step size and of the bounds in terms of quantities characterizing the optimization problem at hand, our results desig a less conservative choice of the step size and provide a better control of the convergence in expectation.
The Expectation Maximization (EM) algorithm is a key reference for inference in latent variable models; unfortunately, its computational cost is prohibitive in the large scale learning setting. In this paper, we propose an extension of the Stochastic Path-Integrated Differential EstimatoR EM (SPIDER-EM) and derive complexity bounds for this novel algorithm, designed to solve smooth nonconvex finite-sum optimization problems. We show that it reaches the same state of the art complexity bounds as SPIDER-EM; and provide conditions for a linear rate of convergence. Numerical results support our findings.
Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms in contemporary reinforcement learning. This class of methods is often applied in conjunction with entropy regularization -- an algorithmic scheme tha t encourages exploration -- and is closely related to soft policy iteration and trust region policy optimization. Despite the empirical success, the theoretical underpinnings for NPG methods remain limited even for the tabular setting. This paper develops $textit{non-asymptotic}$ convergence guarantees for entropy-regularized NPG methods under softmax parameterization, focusing on discounted Markov decision processes (MDPs). Assuming access to exact policy evaluation, we demonstrate that the algorithm converges linearly -- or even quadratically once it enters a local region around the optimal policy -- when computing optimal value functions of the regularized MDP. Moreover, the algorithm is provably stable vis-`a-vis inexactness of policy evaluation. Our convergence results accommodate a wide range of learning rates, and shed light upon the role of entropy regularization in enabling fast convergence.
Gaussian process regression (GPR) is a non-parametric Bayesian technique for interpolating or fitting data. The main barrier to further uptake of this powerful tool rests in the computational costs associated with the matrices which arise when dealin g with large data sets. Here, we derive some simple results which we have found useful for speeding up the learning stage in the GPR algorithm, and especially for performing Bayesian model comparison between different covariance functions. We apply our techniques to both synthetic and real data and quantify the speed-up relative to using nested sampling to numerically evaluate model evidences.
Adaptive Bayesian quadrature (ABQ) is a powerful approach to numerical integration that empirically compares favorably with Monte Carlo integration on problems of medium dimensionality (where non-adaptive quadrature is not competitive). Its key ingre dient is an acquisition function that changes as a function of previously collected values of the integrand. While this adaptivity appears to be empirically powerful, it complicates analysis. Consequently, there are no theoretical guarantees so far for this class of methods. In this work, for a broad class of adaptive Bayesian quadrature methods, we prove consistency, deriving non-tight but informative convergence rates. To do so we introduce a new concept we call weak adaptivity. Our results identify a large and flexible class of adaptive Bayesian quadrature rules as consistent, within which practitioners can develop empirically efficient methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا