ﻻ يوجد ملخص باللغة العربية
Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms in contemporary reinforcement learning. This class of methods is often applied in conjunction with entropy regularization -- an algorithmic scheme that encourages exploration -- and is closely related to soft policy iteration and trust region policy optimization. Despite the empirical success, the theoretical underpinnings for NPG methods remain limited even for the tabular setting. This paper develops $textit{non-asymptotic}$ convergence guarantees for entropy-regularized NPG methods under softmax parameterization, focusing on discounted Markov decision processes (MDPs). Assuming access to exact policy evaluation, we demonstrate that the algorithm converges linearly -- or even quadratically once it enters a local region around the optimal policy -- when computing optimal value functions of the regularized MDP. Moreover, the algorithm is provably stable vis-`a-vis inexactness of policy evaluation. Our convergence results accommodate a wide range of learning rates, and shed light upon the role of entropy regularization in enabling fast convergence.
In this paper, we propose a new global analysis framework for a class of low-rank matrix recovery problems on the Riemannian manifold. We analyze the global behavior for the Riemannian optimization with random initialization. We use the Riemannian gr
This paper investigates the problem of computing the equilibrium of competitive games, which is often modeled as a constrained saddle-point optimization problem with probability simplex constraints. Despite recent efforts in understanding the last-it
Natural gradient descent has proven effective at mitigating the effects of pathological curvature in neural network optimization, but little is known theoretically about its convergence properties, especially for emph{nonlinear} networks. In this wor
The EM algorithm is one of the most popular algorithm for inference in latent data models. The original formulation of the EM algorithm does not scale to large data set, because the whole data set is required at each iteration of the algorithm. To al
While the techniques in optimal control theory are often model-based, the policy optimization (PO) approach can directly optimize the performance metric of interest without explicit dynamical models, and is an essential approach for reinforcement lea