ﻻ يوجد ملخص باللغة العربية
We consider the simplest non-linear discrete dynamical systems, given by the logistic maps $f_{a}(x)=ax(1-x)$ of the interval $[0,1]$. We show that there exist real parameters $ain (0,4)$ for which almost every orbit of $f_a$ has the same statistical distribution in $[0,1]$, but this limiting distribution is not Turing computable. In particular, the Monte Carlo method cannot be applied to study these dynamical systems.
This article is devoted to study which conditions imply that a topological dynamical system is mean sensitive and which do not. Among other things we show that every uniquely ergodic, mixing system with positive entropy is mean sensitive. On the othe
We exhibit a 6-element semigroup that has no finite identity basis but nevertheless generates a variety whose finite membership problem admits a polynomial algorithm.
It is shown that any non-PI minimal system is Li-Yorke sensitive. Consequently, any minimal system with nontrivial weakly mixing factor (such a system is non-PI) is Li-Yorke sensitive, which answers affirmatively an open question by Akin and Kolyada.
Kolmogorov complexity is the length of the ultimately compressed version of a file (that is, anything which can be put in a computer). Formally, it is the length of a shortest program from which the file can be reconstructed. We discuss the incomputa
We characterize a stochastic dynamical system with tempered stable noise, by examining its probability density evolution. This probability density function satisfies a nonlocal Fokker-Planck equation. First, we prove a superposition principle that th