We exhibit a 6-element semigroup that has no finite identity basis but nevertheless generates a variety whose finite membership problem admits a polynomial algorithm.
Recent results of Qu and Tuarnauceanu describe explicitly the finite p-groups which are not elementary abelian and have the property that the number of their subgroups is maximal among p-groups of a given order. We complement these results from the b
ottom level up by determining completely the non-cyclic finite p-groups whose number of subgroups among p-groups of a given order is minimal.
We exhibit a simple condition under which a finite involutary semigroup whose semigroup reduct is inherently nonfinitely based is also inherently nonfinitely based as a unary semigroup. As applications, we get already known as well as new examples of
inherently nonfinitely based involutory semigroups. We also show that for finite regular semigroups, our condition is not only sufficient but also necessary for the property of being inherently nonfinitely based to persist. This leads to an algorithmic description of regular inherently nonfinitely based involutory semigroups.
A subset $A$ of a semigroup $S$ is called a $chain$ ($antichain$) if $xyin{x,y}$ ($xy otin{x,y}$) for any (distinct) elements $x,yin S$. A semigroup $S$ is called ($anti$)$chain$-$finite$ if $S$ contains no infinite (anti)chains. We prove that each a
ntichain-finite semigroup $S$ is periodic and for every idempotent $e$ of $S$ the set $sqrt[infty]{e}={xin S:exists ninmathbb N;;(x^n=e)}$ is finite. This property of antichain-finite semigroups is used to prove that a semigroup is finite if and only if it is chain-finite and antichain-finite. Also we present an example of an antichain-finite semilattice that is not a union of finitely many chains.
A graph is split if there is a partition of its vertex set into a clique and an independent set. The present paper is devoted to the splitness of some graphs related to finite simple groups, namely, prime graphs and solvable graphs, and their compact
forms. It is proved that the compact form of the prime graph of any finite simple group is split.
Mikhail V. Volkov
,Svetlana V. Goldberg
,Stanislav I. Kublanovsky
.
(2010)
.
"A minimal nonfinitely based semigroup whose variety is polynomially recognizable"
.
Mikhail Volkov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا