ﻻ يوجد ملخص باللغة العربية
We characterize a stochastic dynamical system with tempered stable noise, by examining its probability density evolution. This probability density function satisfies a nonlocal Fokker-Planck equation. First, we prove a superposition principle that the probability measure-valued solution to this nonlocal Fokker-Planck equation is equivalent to the martingale solution composed with the inverse stochastic flow. This result together with a Schauder estimate leads to the existence and uniqueness of strong solution for the nonlocal Fokker-Planck equation. Second, we devise a convergent finite difference method to simulate the probability density function by solving the nonlocal Fokker-Planck equation. Finally, we apply our aforementioned theoretical and numerical results to a nonlinear filtering system by simulating a nonlocal Zakai equation.
We derive the stochastic description of a massless, interacting scalar field in de Sitter space directly from the quantum theory. This is done by showing that the density matrix for the effective theory of the long wavelength fluctuations of the fiel
In this paper, we use a unified framework to study Poisson stable (including stationary, periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent, almost recurrent in the sense of Bebutov, Levitan almost periodic, pseudo-peri
In a prior paper the authors obtained a four-dimensional discrete integrable dynamical system by the traveling wave reduction from the lattice super-KdV equation in a case of finitely generated Grassmann algebra. The system is a coupling of a Quispel
The Fokker-Planck equation is considered, which is connected to the birth and death process with immigration by the Poisson transform. The fractional derivative in time variable is introduced into the Fokker-Planck equation. From its solution (the pr
We investigate the diffusion of particles in an attractive one-dimensional potential that grows logarithmically for large $|x|$ using the Fokker-Planck equation. An eigenfunction expansion shows that the Boltzmann equilibrium density does not fully