ﻻ يوجد ملخص باللغة العربية
We explore machine learning methods for AC Optimal Powerflow (ACOPF) - the task of optimizing power generation in a transmission network according while respecting physical and engineering constraints. We present two formulations of ACOPF as a machine learning problem: 1) an end-to-end prediction task where we directly predict the optimal generator settings, and 2) a constraint prediction task where we predict the set of active constraints in the optimal solution. We validate these approaches on two benchmark grids.
Alternating current optimal power flow (AC-OPF) is one of the fundamental problems in power systems operation. AC-OPF is traditionally cast as a constrained optimization problem that seeks optimal generation set points whilst fulfilling a set of non-
Solving power flow (PF) equations is the basis of power flow analysis, which is important in determining the best operation of existing systems, performing security analysis, etc. However, PF equations can be out-of-date or even unavailable due to sy
In recent years, the power systems research community has seen an explosion of novel methods for formulating the AC power flow equations. Consequently, benchmarking studies using the seminal AC Optimal Power Flow (AC-OPF) problem have emerged as the
In this study, we propose a machine-learning-based approach to identify the modal parameters of the output-only data for structural health monitoring (SHM) that makes full use of the characteristic of independence of modal responses and the principle
In this work we design and compare different supervised learning algorithms to compute the cost of Alternating Current Optimal Power Flow (ACOPF). The motivation for quick calculation of OPF cost outcomes stems from the growing need of algorithmic-ba