ﻻ يوجد ملخص باللغة العربية
In this study, we propose a machine-learning-based approach to identify the modal parameters of the output-only data for structural health monitoring (SHM) that makes full use of the characteristic of independence of modal responses and the principle of machine learning. By taking advantage of the independence feature of each mode, we use the principle of unsupervised learning, making the training process of the deep neural network becomes the process of modal separation. A self-coding deep neural network is designed to identify the structural modal parameters from the vibration data of structures. The mixture signals, that is, the structural response data, are used as the input of the neural network. Then we use a complex loss function to restrict the training process of the neural network, making the output of the third layer the modal responses we want, and the weights of the last two layers are mode shapes. The deep neural network is essentially a nonlinear objective function optimization problem. A novel loss function is proposed to constrain the independent feature with consideration of uncorrelation and non-Gaussianity to restrict the designed neural network to obtain the structural modal parameters. A numerical example of a simple structure and an example of actual SHM data from a cable-stayed bridge are presented to illustrate the modal parameter identification ability of the proposed approach. The results show the approachs good capability in blindly extracting modal information from system responses.
We explore machine learning methods for AC Optimal Powerflow (ACOPF) - the task of optimizing power generation in a transmission network according while respecting physical and engineering constraints. We present two formulations of ACOPF as a machin
Labeling training datasets has become a key barrier to building medical machine learning models. One strategy is to generate training labels programmatically, for example by applying natural language processing pipelines to text reports associated wi
A relatively new set of transport-based transforms (CDT, R-CDT, LOT) have shown their strength and great potential in various image and data processing tasks such as parametric signal estimation, classification, cancer detection among many others. It
We build a theoretical framework for designing and understanding practical meta-learning methods that integrates sophisticated formalizations of task-similarity with the extensive literature on online convex optimization and sequential prediction alg
Zeroth-order (ZO) optimization is a subset of gradient-free optimization that emerges in many signal processing and machine learning applications. It is used for solving optimization problems similarly to gradient-based methods. However, it does not