ﻻ يوجد ملخص باللغة العربية
In this work, we investigate semi-supervised learning (SSL) for image classification using adversarial training. Previous results have illustrated that generative adversarial networks (GANs) can be used for multiple purposes. Triple-GAN, which aims to jointly optimize model components by incorporating three players, generates suitable image-label pairs to compensate for the lack of labeled data in SSL with improved benchmark performance. Conversely, Bad (or complementary) GAN, optimizes generation to produce complementary data-label pairs and force a classifiers decision boundary to lie between data manifolds. Although it generally outperforms Triple-GAN, Bad GAN is highly sensitive to the amount of labeled data used for training. Unifying these two approaches, we present unified-GAN (UGAN), a novel framework that enables a classifier to simultaneously learn from both good and bad samples through adversarial training. We perform extensive experiments on various datasets and demonstrate that UGAN: 1) achieves state-of-the-art performance among other deep generative models, and 2) is robust to variations in the amount of labeled data used for training.
Generative Adversarial Networks (GANs) based semi-supervised learning (SSL) approaches are shown to improve classification performance by utilizing a large number of unlabeled samples in conjunction with limited labeled samples. However, their perfor
Co-training, extended from self-training, is one of the frameworks for semi-supervised learning. Without natural split of features, single-view co-training works at the cost of training extra classifiers, where the algorithm should be delicately desi
While semi-supervised learning (SSL) has received tremendous attentions in many machine learning tasks due to its successful use of unlabeled data, existing SSL algorithms use either all unlabeled examples or the unlabeled examples with a fixed high-
We investigate a strategy for improving the efficiency of contrastive learning of visual representations by leveraging a small amount of supervised information during pre-training. We propose a semi-supervised loss, SuNCEt, based on noise-contrastive
Recent work has demonstrated that neural networks are vulnerable to adversarial examples. To escape from the predicament, many works try to harden the model in various ways, in which adversarial training is an effective way which learns robust featur