ﻻ يوجد ملخص باللغة العربية
Improved fabrication techniques have enabled the possibility of ballistic transport and unprecedented spin manipulation in ultraclean graphene devices. Spin transport in graphene is typically probed in a nonlocal spin valve and is analyzed using spin diffusion theory, but this theory is not necessarily applicable when charge transport becomes ballistic or when the spin diffusion length is exceptionally long. Here, we study these regimes by performing quantum simulations of graphene nonlocal spin valves. We find that conventional spin diffusion theory fails to capture the crossover to the ballistic regime as well as the limit of long spin diffusion length. We show that the latter can be described by an extension of the current theoretical framework. Finally, by covering the whole range of spin dynamics, our study opens a new perspective to predict and scrutinize spin transport in graphene and other two-dimensional material-based ultraclean devices.
We investigate the spin transport across the magnetic phase diagram of a frustrated antiferromagnetic insulator and uncover a drastic modification of the transport regime from spin diffusion to spin superfluidity. Adopting a triangular lattice accoun
Vortices play an unique role in heat and momentum transports in astro- and geo-physics, and it is also the origin of the Earths dynamo. A question existing for a long time is whether the movement of vortices can be predicted or understood based on th
The axion is a hypothetical but experimentally undetected particle. Recently, the antiferromagnetic topological insulator MnBi$_2$Te$_4$ has been predicted to host the axion insulator, but the experimental evidence remains elusive. Specifically, the
In this work we show that for a quasi-2D system of size $Omega$ and thickness $t$ the resistance goes as $(2rho/pi t)ln(Omega/W)$, diverging logarithmically with the size. Measurements in highly oriented pyrolytic graphite (HOPG) as well as numerical
We study a simple nonlocal-in-time dynamic system proposed for the effective modeling of complex diffusive regimes in heterogeneous media. We present its solutions and their commonly studied statistics such as the mean square distance. This interesti