ترغب بنشر مسار تعليمي؟ اضغط هنا

Crossover from Diffusive to Superfluid Transport in Frustrated Magnets

81   0   0.0 ( 0 )
 نشر من قبل Aurelien Manchon
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the spin transport across the magnetic phase diagram of a frustrated antiferromagnetic insulator and uncover a drastic modification of the transport regime from spin diffusion to spin superfluidity. Adopting a triangular lattice accounting for both nearest neighbor and next-nearest neighbor exchange interactions with easy-plane anisotropy, we perform atomistic spin simulations on a two-terminal configuration across the full magnetic phase diagram. We found that as long as the ground state magnetic moments remain in-plane, irrespective of whether the magnetic configuration is ferromagnetic, collinear or non-collinear antiferromagnetic, the system exhibits spin superfluid behavior with a device output that is independent on the value of the exchange interactions. When the magnetic frustration is large enough to compete with the easy-plane anisotropy and cant the magnetic moments out of the plane, the spin transport progressively evolves towards the diffusive regime. The robustness of spin superfluidity close to magnetic phase boundaries is investigated and we uncover the possibility for {em proximate} spin superfluidity close to the ferromagnetic transition.

قيم البحث

اقرأ أيضاً

Improved fabrication techniques have enabled the possibility of ballistic transport and unprecedented spin manipulation in ultraclean graphene devices. Spin transport in graphene is typically probed in a nonlocal spin valve and is analyzed using spin diffusion theory, but this theory is not necessarily applicable when charge transport becomes ballistic or when the spin diffusion length is exceptionally long. Here, we study these regimes by performing quantum simulations of graphene nonlocal spin valves. We find that conventional spin diffusion theory fails to capture the crossover to the ballistic regime as well as the limit of long spin diffusion length. We show that the latter can be described by an extension of the current theoretical framework. Finally, by covering the whole range of spin dynamics, our study opens a new perspective to predict and scrutinize spin transport in graphene and other two-dimensional material-based ultraclean devices.
We compare a fully quantum mechanical numerical calculation of the conductivity of graphene to the semiclassical Boltzmann theory. Considering a disorder potential that is smooth on the scale of the lattice spacing, we find quantitative agreement bet ween the two approaches away from the Dirac point. At the Dirac point the two theories are incompatible at weak disorder, although they may be compatible for strong disorder. Our numerical calculations provide a quantitative description of the full crossover between the quantum and semiclassical graphene transport regimes.
We analyze dephasing by electron interactions in a small disordered quasi-one dimensional (1D) ring weakly coupled to leads, where we recently predicted a crossover for the dephasing time $tPh(T)$ from diffusive or ergodic 1D ($tPh^{-1} propto T^{2/3 }, T^{1}$) to $0D$ behavior ($tPh^{-1} propto T^{2}$) as $T$ drops below the Thouless energy $ETh$. We provide a detailed derivation of our results, based on an influence functional for quantum Nyquist noise, and calculate all leading and subleading terms of the dephasing time in the three regimes. Explicitly taking into account the Pauli blocking of the Fermi sea in the metal allows us to describe the $0D$ regime on equal footing as the others. The crossover to $0D$, predicted by Sivan, Imry and Aronov for 3D systems, has so far eluded experimental observation. We will show that for $T ll ETh$, $0D$ dephasing governs not only the $T$-dependence for the smooth part of the magnetoconductivity but also for the amplitude of the Altshuler-Aronov-Spivak oscillations, which result only from electron paths winding around the ring. This observation can be exploited to filter out and eliminate contributions to dephasing from trajectories which do not wind around the ring, which may tend to mask the $T^{2}$ behavior. Thus, the ring geometry holds promise of finally observing the crossover to $0D$ experimentally.
109 - Derek Harland 2019
Frustrated magnets are known to support two-dimensional topological solitons, called skyrmions. A continuum model for frustrated magnets has recently been shown to support both two-dimensional skyrmions and three-dimensional knotted solitons (hopfion s). In this note we derive lower bounds for the energies of these solitons expressed in terms of their topological invariants. The bounds are linear in the degree in the case of skyrmions and scale as the Hopf degree to the power 3/4 in the case of hopfions.
Vortices play an unique role in heat and momentum transports in astro- and geo-physics, and it is also the origin of the Earths dynamo. A question existing for a long time is whether the movement of vortices can be predicted or understood based on th eir historical data. Here we use both the experiments and numerical simulations to demonstrate some generic features of vortex motion and distribution. It can be found that the vortex movement can be described on the framework of Brownian particles where they move ballistically for the time shorter than some critical timescales, and then move diffusively. Traditionally, the inertia of vortex has often been neglected when one accounts for their motion, our results imply that vortices actually have inertial-induced memory such that their short term movement can be predicted. Extending to astro- and geo-physics, the critical timescales of transition are in the order of minutes for vortices in atmosphere and ocean, in which this inertial effect may often be neglected compared to other steering sources. However, the timescales for vortices are considerably larger which range from days to a year. It infers the new concept that not only the external sources alone, for example the solar wind, but also the internal source, which is the vortex inertia, can contribute to the short term Earths magnetic field variation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا