ﻻ يوجد ملخص باللغة العربية
Vortices play an unique role in heat and momentum transports in astro- and geo-physics, and it is also the origin of the Earths dynamo. A question existing for a long time is whether the movement of vortices can be predicted or understood based on their historical data. Here we use both the experiments and numerical simulations to demonstrate some generic features of vortex motion and distribution. It can be found that the vortex movement can be described on the framework of Brownian particles where they move ballistically for the time shorter than some critical timescales, and then move diffusively. Traditionally, the inertia of vortex has often been neglected when one accounts for their motion, our results imply that vortices actually have inertial-induced memory such that their short term movement can be predicted. Extending to astro- and geo-physics, the critical timescales of transition are in the order of minutes for vortices in atmosphere and ocean, in which this inertial effect may often be neglected compared to other steering sources. However, the timescales for vortices are considerably larger which range from days to a year. It infers the new concept that not only the external sources alone, for example the solar wind, but also the internal source, which is the vortex inertia, can contribute to the short term Earths magnetic field variation.
Three dimensional roll-type double-diffusive convection in a horizontally infinite layer of an uncompressible liquid is considered in the neighborhood of Hopf bifurcation points. A system of amplitude equations for the variations of convective rolls
In rotating Rayleigh-Benard convection, columnar vortices advect horizontally in a stochastic manner. When the centrifugal buoyancy is present the vortices exhibit radial motions that can be explained through a Langevin-type stochastic model. Surpris
Improved fabrication techniques have enabled the possibility of ballistic transport and unprecedented spin manipulation in ultraclean graphene devices. Spin transport in graphene is typically probed in a nonlocal spin valve and is analyzed using spin
Dry lakes covered with a salt crust organised into beautifully patterned networks of narrow ridges are common in arid regions. Here, we consider the initial instability and the ultimate fate of buoyancy-driven convection that could lead to such patte
The relative importance of the helicity and cross-helicity electromotive dynamo effects for self-sustained magnetic field generation by chaotic thermal convection in rotating spherical shells is investigated as a function of shell thickness. Two dist