ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Memory Plasticity for Anomaly Detection

80   0   0.0 ( 0 )
 نشر من قبل Tharindu Fernando
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the domain of machine learning, Neural Memory Networks (NMNs) have recently achieved impressive results in a variety of application areas including visual question answering, trajectory prediction, object tracking, and language modelling. However, we observe that the attention based knowledge retrieval mechanisms used in current NMNs restricts them from achieving their full potential as the attention process retrieves information based on a set of static connection weights. This is suboptimal in a setting where there are vast differences among samples in the data domain; such as anomaly detection where there is no consistent criteria for what constitutes an anomaly. In this paper, we propose a plastic neural memory access mechanism which exploits both static and dynamic connection weights in the memory read, write and output generation procedures. We demonstrate the effectiveness and flexibility of the proposed memory model in three challenging anomaly detection tasks in the medical domain: abnormal EEG identification, MRI tumour type classification and schizophrenia risk detection in children. In all settings, the proposed approach outperforms the current state-of-the-art. Furthermore, we perform an in-depth analysis demonstrating the utility of neural plasticity for the knowledge retrieval process and provide evidence on how the proposed memory model generates sparse yet informative memory outputs.

قيم البحث

اقرأ أيضاً

Unsupervised anomaly discovery in stream data is a research topic with many practical applications. However, in many cases, it is not easy to collect enough training data with labeled anomalies for supervised learning of an anomaly detector in order to deploy it later for identification of real anomalies in streaming data. It is thus important to design anomalies detectors that can correctly detect anomalies without access to labeled training data. Our idea is to adapt the Online evolving Spiking Neural Network (OeSNN) classifier to the anomaly detection task. As a result, we offer an Online evolving Spiking Neural Network for Unsupervised Anomaly Detection algorithm (OeSNN-UAD), which, unlike OeSNN, works in an unsupervised way and does not separate output neurons into disjoint decision classes. OeSNN-UAD uses our proposed new two-step anomaly detection method. Also, we derive new theoretical properties of neuronal model and input layer encoding of OeSNN, which enable more effective and efficient detection of anomalies in our OeSNN-UAD approach. The proposed OeSNN-UAD detector was experimentally compared with state-of-the-art unsupervised and semi-supervised detectors of anomalies in stream data from the Numenta Anomaly Benchmark and Yahoo Anomaly Datasets repositories. Our approach outperforms the other solutions provided in the literature in the case of data streams from the Numenta Anomaly Benchmark repository. Also, in the case of real data files of the Yahoo Anomaly Benchmark repository, OeSNN-UAD outperforms other selected algorithms, whereas in the case of Yahoo Anomaly Benchmark synthetic data files, it provides competitive results to the results recently reported in the literature.
We seek to investigate the scalability of neuromorphic computing for computer vision, with the objective of replicating non-neuromorphic performance on computer vision tasks while reducing power consumption. We convert the deep Artificial Neural Netw ork (ANN) architecture U-Net to a Spiking Neural Network (SNN) architecture using the Nengo framework. Both rate-based and spike-based models are trained and optimized for benchmarking performance and power, using a modified version of the ISBI 2D EM Segmentation dataset consisting of microscope images of cells. We propose a partitioning method to optimize inter-chip communication to improve speed and energy efficiency when deploying multi-chip networks on the Loihi neuromorphic chip. We explore the advantages of regularizing firing rates of Loihi neurons for converting ANN to SNN with minimum accuracy loss and optimized energy consumption. We propose a percentile based regularization loss function to limit the spiking rate of the neuron between a desired range. The SNN is converted directly from the corresponding ANN, and demonstrates similar semantic segmentation as the ANN using the same number of neurons and weights. However, the neuromorphic implementation on the Intel Loihi neuromorphic chip is over 2x more energy-efficient than conventional hardware (CPU, GPU) when running online (one image at a time). These power improvements are achieved without sacrificing the task performance accuracy of the network, and when all weights (Loihi, CPU, and GPU networks) are quantized to 8 bits.
The adaptive changes in synaptic efficacy that occur between spiking neurons have been demonstrated to play a critical role in learning for biological neural networks. Despite this source of inspiration, many learning focused applications using Spiki ng Neural Networks (SNNs) retain static synaptic connections, preventing additional learning after the initial training period. Here, we introduce a framework for simultaneously learning the underlying fixed-weights and the rules governing the dynamics of synaptic plasticity and neuromodulated synaptic plasticity in SNNs through gradient descent. We further demonstrate the capabilities of this framework on a series of challenging benchmarks, learning the parameters of several plasticity rules including BCM, Ojas, and their respective set of neuromodulatory variants. The experimental results display that SNNs augmented with differentiable plasticity are sufficient for solving a set of challenging temporal learning tasks that a traditional SNN fails to solve, even in the presence of significant noise. These networks are also shown to be capable of producing locomotion on a high-dimensional robotic learning task, where near-minimal degradation in performance is observed in the presence of novel conditions not seen during the initial training period.
We introduce a new structure for memory neural networks, called feedforward sequential memory networks (FSMN), which can learn long-term dependency without using recurrent feedback. The proposed FSMN is a standard feedforward neural networks equipped with learnable sequential memory blocks in the hidden layers. In this work, we have applied FSMN to several language modeling (LM) tasks. Experimental results have shown that the memory blocks in FSMN can learn effective representations of long history. Experiments have shown that FSMN based language models can significantly outperform not only feedforward neural network (FNN) based LMs but also the popular recurrent neural network (RNN) LMs.
In this work, we present a simple and general search space shrinking method, called Angle-Based search space Shrinking (ABS), for Neural Architecture Search (NAS). Our approach progressively simplifies the original search space by dropping unpromisin g candidates, thus can reduce difficulties for existing NAS methods to find superior architectures. In particular, we propose an angle-based metric to guide the shrinking process. We provide comprehensive evidences showing that, in weight-sharing supernet, the proposed metric is more stable and accurate than accuracy-based and magnitude-based metrics to predict the capability of child models. We also show that the angle-based metric can converge fast while training supernet, enabling us to get promising shrunk search spaces efficiently. ABS can easily apply to most of NAS approaches (e.g. SPOS, FairNAS, ProxylessNAS, DARTS and PDARTS). Comprehensive experiments show that ABS can dramatically enhance existing NAS approaches by providing a promising shrunk search space.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا